Polymethyl Methacrylate with a Molecular Weight of 107 g/mol for X-Ray Lithography

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of a study of syndiotactic polymethyl methacrylate with a molecular weight of 107 g/mol, synthesized via ionic polymerization with radiation initiation, are presented. Changes in the chemical structure of the polymer material have been analyzed by IR spectroscopy, differential thermal analysis, and gel permeation chromatography. During thermal decomposition of the initial polymer, the mass loss process can be divided into three stages: low-temperature, medium-temperature, and high-temperature. The pronounced thermal effect of polymer melting disappears even after exposure to minimal doses of ionizing radiation. A relatively rapid decrease in the molecular weight under the influence of X-ray radiation in the dose range up to 100 J/cm3 and a scatter in molecular sizes have been found. Polydispersity at low doses is approximately 3.5 times higher than that at doses of the order of 10 kJ/cm3. A latent image development rate of approximately five times higher than that of a polymer with a molecular weight of 106 g/mol under standard conditions was achieved. The contrast value was 3.4. Using X-ray synchrotron radiation at the VEPP-3 source, microstructuring was carried out by X-ray lithography. Microstructures up to 5 µm high and about 2 µm in diameter were obtained.

Sobre autores

V. Nazmov

Budker Institute of Nuclear Physics of SB RAS; Institute of Solid State Chemistry and Mechanochemistry of SB RAS

Autor responsável pela correspondência
Email: V.P.Nazmov@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

A. Varand

Budker Institute of Nuclear Physics of SB RAS

Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk

M. Mikhailenko

Institute of Solid State Chemistry and Mechanochemistry of SB RAS

Autor responsável pela correspondência
Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk

B. Goldenberg

Budker Institute of Nuclear Physics of SB RAS; Shared-Use Center “SKIF”, Boreskov Institute of Catalysis of SB RAS

Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk; Russia, 630559, Novosibirsk

I. Prosanov

Institute of Solid State Chemistry and Mechanochemistry of SB RAS

Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk

K. Gerasimov

Institute of Solid State Chemistry and Mechanochemistry of SB RAS

Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk

Bibliografia

  1. Haller I., Hatzakis M., Srinivasan R. // IBM J. Res. Devel. 1968. V. 12. P. 251. https://doi.org/10.1147/rd.123.0251
  2. Spears D.L., Smith H.I. // Electron. Lett. 1972. V. 8. P. 102. https://doi.org/10.1049/el:19720074
  3. Vladimirsky Y., Vladimirsky O., Morris K.J., M. Klopf J., Calderon G.M., Saile V. // Microelectron. Eng. 1996. V. 30. № 1–4. P. 543. https://doi.org/10.1016/0167-9317(95)00305-3
  4. Greeneich J.S. // J. Electrochem. Soc. 1975. V. 122. P. 970.
  5. Charlesby A. Atomic Radiation and Polymers. N.Y.: Pergamon, 1960. 556 p.
  6. Hiraoka H. // IBM J. Res. Devel. 1977. V. 21. P. 121. https://doi.org/10.1147/rd.212.0121
  7. De Carlo F., Mancini D.C., Lai B., Song J.J. // Microsyst. Technol. 1998. V. 4. P. 86. https://doi.org/10.1007/s005420050102
  8. Nazmov V.P., Mezentseva L.A., Pindyurin V.F., Petrov V.V., Yakovleva E.N. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. P. 493. https://doi.org/10.1016/S0168-9002(00)00238-2
  9. Pantenburg F.J., Achenbach S., Mohr J. // J. Vac. Sci. Technol. B. 1998. V. 16. № 6. P. 3547. https://doi.org/10.1116/1.590494
  10. Moreau W.M. Semiconductor Lithography: Principles, Practices, and Materials. N.Y.: Plenum Press, 1988. 986 p.
  11. Yan M., Choi S., Subramanian K.R.V., Adesida I. // J. Vac. Sci. Technol. B. 2008. V. 26. № 6. P. 2306. https://doi.org/1.0.1116/1.3002562
  12. Khoury M., Ferry D.K. // J. Vac. Sci. Technol. B. 1996. V. 14. № 1. P. 75. https://doi.org/10.1116/1.588437
  13. Nagai H. // J. Appl. Pol. Sci. 1963. V. 7. № 5. P. 1697 https://doi.org/10.1002/app.1963.070070512
  14. Willis H.A., Zichy V.J.I., Hendra P.J. // Polymer. 1969. V. 10. P.737. https://doi.org/10.1016/0032-3861(69)90101-3
  15. Patent No. 3039110 (DE). Verfahren fur Die Spannungsfreie Entwicklung von Bestrahlten Polymethylmethacrylatschichten / Siemens AG, Munich. Glasha- user W., Ghica G.-V. 16.10.1980.
  16. Goldenberg B.G., Lemzyakov A.G., Nazmov V.P., Pindyurin V.F. // Phys. Procedia. 2016. V. 84. P. 205. https://doi.org/10.1016/j.phpro.2016.11.036
  17. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Procedia. 2016. V. 84. P. 19. https://doi.org/10.1016/j.phpro.2016.11.005
  18. Nazmov V., Goldenberg B., Vasiliev A., Asadchikov V. // J. Micromech. Microeng. 2021. V. 31. P. 055011. https://doi.org/10.1088/1361-6439/abf331
  19. El-Kholi A., Mohr J., Nazmov V. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. № 1–2. P. 497. https://doi.org/10.1016/S0168-9002(00)00239-4
  20. Kunka D., Mohr J., Nazmov V., Meiser J., Meyer P., Amberger M., Koch F., Schulz J., Walter M., Duttenhofer T., Voigt A., Ahrens G., Grützner G. // Microsyst. Technol. 2014. V. 20. № 10–11. P. 2023. https://doi.org/10.1007/s00542-013-2055-x
  21. McNamara S. // J. Micromech. Microeng. 2011. V. 21. P. 015002. https://doi.org/10.1088/0960-1317/21/1/015002

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (43KB)
3.

Baixar (69KB)
4.

Baixar (37KB)
5.

Baixar (719KB)

Declaração de direitos autorais © В.П. Назьмов, А.В. Варанд, М.А. Михайленко, Б.Г. Гольденберг, И.Ю. Просанов, К.Б. Герасимов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies