Change in the Charge State of MOS Structures with a Radiation-Induced Charge under High-Field Injection of Electrons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of high-field electron injection modes on the charge state and defectiveness of metal–oxide–semiconductor (MOS) structures after irradiation is studied. It is shown that to erase the radiation-induced positive charge accumulated in the SiO2 film of MOS structures, it is necessary to apply high-field Fowler–Nordheim tunnel injection of electrons in electric field that do not cause the hole generation. It has been established that erasure of the radiation-induced positive charge in the SiO2 film of MOS structure and the generation of new interface traps are mainly determined by the magnitude of the charge injected into the dielectric. It has been found that, upon annihilation of the holes trapped in SiO2 as a result of the interaction with the injected electrons, a significant increase in the number of the interface traps is observed, which significantly exceeds the number of interface traps arising upon annealing of a radiation-induced positive charge at room temperature. A model is proposed that describes the annihilation of a radiation-induced positive charge upon interaction with injected electrons.

Sobre autores

D. Andreev

Bauman Moscow State Technical University, The Kaluga Branch

Email: vladimir_andreev@bmstu.ru
Russia, 248000, Kaluga

G. Bondarenko

National Research University Higher School of Economics

Email: vladimir_andreev@bmstu.ru
Russia, 101000, Moscow

V. Andreev

Bauman Moscow State Technical University, The Kaluga Branch

Autor responsável pela correspondência
Email: vladimir_andreev@bmstu.ru
Russia, 248000, Kaluga

Bibliografia

  1. Oldham T.R., McLean F.B. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 483. https://doi.org/10.1109/TNS.2003.812927
  2. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1833. https://doi.org/10.1109/TNS.2008.2001040
  3. Fleetwood D.M. // IEEE Trans. Nucl. Sci. 2018. V. 65. P. 1465. https://doi.org/10.1109/TNS.2017.2786140
  4. Hughes H.L., Benedetto J.M. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 500. https://doi.org/10.1109/TNS.2003.812928
  5. Esqueda I.S., Barnaby H.J., King M.P. // IEEE Trans. Nucl. Sci. 2015. V. 62. P. 1501. https://doi.org/10.1109/TNS.2015.2414426
  6. Murata K., Mitomo S., Matsuda T., Yokoseki T., Makino T., Onoda S., Takeyama A., Ohshima T., Okubo S., Tanaka Y., Kandori M., Yoshie T., Hijikata Y. // Phys. Stat. Sol. A. 2017. V. 214. P. 1600446. https://doi.org/10.1002/pssa.201600446
  7. Fleetwood D.M. // IEEE Trans. Nucl. Sci. 2020. V. 67. P. 1216. https://doi.org/10.1109/TNS.2020.2971861
  8. Holmes-Siedle A., Adams L. // Radiat. Phys. Chem. 1986. V. 28. P. 235. https://doi.org/10.1016/1359-0197(86)90134-7
  9. Pejović M.M. // Radiat. Phys. Chem. 2017. V. 130. P. 221. https://doi.org/10.1016/j.radphyschem.2016.08.027
  10. Ristic G.S., Vasovic N.D., Kovacevic M., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 2703. https://doi.org/10.1016/j.nimb.2011.08.015
  11. Lipovetzky J., Holmes–Siedle A., Inza M.G., Carbonetto S., Redin E., Faigon A. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 3133. https://doi.org/10.1109/TNS.2012.2222667
  12. Siebel O.F., Pereira J.G., Souza R.S., Ramirez-Fernandez F.J., Schneider M.C., Galup-Montoro C. // Radiat. Measurements. 2015. V. 75. P. 53. https://doi.org/10.1016/j.radmeas.2015.03.004
  13. Kulhar M., Dhoot K., Pandya A. // IEEE Trans. Nucl. Sci. 2019. V. 66. P. 2220. https://doi.org/10.1109/TNS.2019.2942955
  14. Camanzi B., Holmes-Siedle A.G. // Nature Mater. 2008. V. 7. P. 343. https://doi.org/10.1038/nmat2159
  15. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolyarov A.A. // Sensors. 2020. V. 20. P. 2382. https://doi.org/10.3390/s20082382
  16. Andreev V.V., Maslovsky V.M., Andreev D.V., Stolyarov A.A. // Proc. SPIE. 2019. V. 11022. P. 1102207. https://doi.org/10.1117/12.2521985
  17. Andreev V.V., Bondarenko G.G., Andreev D.V., Stolyarov A.A. // J. Contemp. Phys. (Armenian Acad. Sci.). 2020. V. 55. P. 144. https://doi.org/10.3103/S106833722002005X
  18. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2020. V. 14. P. 260. https://doi.org/10.1134/S1027451020020196
  19. Lipovetzky J., Redin E.G., Faigon A. // IEEE Trans. Nucl. Sci. 2007. V. 54. P. 1244. https://doi.org/10.1109/TNS.2007.895122
  20. Peng L., Hu D., Jia Y., Wu Y., An P., Jia G. // IEEE Trans. Nucl. Sci. 2017. V. 64. P. 2633. https://doi.org/10.1109/TNS.2017.2744679
  21. Andreev V.V., Bondarenko G.G., Maslovsky V.M., Stolyarov A.A., Andreev D.V. // Phys. Stat. Sol. C. 2015. V. 12. P. 299. https://doi.org/10.1002/pssc.201400119
  22. Andreev D.V., Maslovsky V.M., Andreev V.V., Stolyarov A.A. // Phys. Stat. Sol. A. 2022. V. 219. P. 2100400. https://doi.org/10.1002/pssa.202100400
  23. Lai S.K. // J. Appl. Phys. 1983. V. 54. P. 2540. https://doi.org/10.1063/1.332323
  24. Arnold D., Cartier E., DiMaria D.J. // Phys. Rev. B. 1994. V. 49. P. 10278. https://doi.org/10.1103/PhysRevB.49.10278
  25. Strong A.W., Wu E.Y., Vollertsen R., Sune J., Rosa G.L., Rauch S.E., Sullivan T.D. Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009. 624 p.
  26. Palumbo F., Wen C., Lombardo S., Pazos S., Aguirre F., Eizenberg M., Hui F., Lanza M. // Adv. Funct. Mater. 2019. V. 29. P. 1900657. https://doi.org/10.1002/adfm.201900657
  27. Wu E.Y. // IEEE Trans. Electron Devices. 2019. V. 66. P. 4523. https://doi.org/10.1109/TED.2019.2933612
  28. Zebrev G.I., Orlov V.V., Gorbunov M.S., Drosdetsky M.G. // Microelectron. Reliab. 2018. V. 84. P. 181. https://doi.org/10.1016/j.microrel.2018.03.014
  29. Andreev D.V., Bondarenko G.G., Andreev V.V., Maslovsky V.M., Stolyarov A.A. // Acta Phys. Pol. A. 2019. V. 136. P. 263. https://doi.org/10.12693/APhysPolA.136.263
  30. Cerbu F., Madia O., Andreev D.V., Fadida S., Eizenberg M., Breuil L., Lisoni J.G., Kittl J.A., Strand J., Shluger A.L., Afanas’ev V.V., Houssa M., Stesmans A. // Appl. Phys. Lett. 2016. V. 108. P. 222901. https://doi.org/10.1063/1.495271

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (50KB)
3.

Baixar (95KB)
4.

Baixar (111KB)

Declaração de direitos autorais © Д.В. Андреев, Г.Г. Бондаренко, В.В. Андреев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies