Simulation of the Diffusion of Copper Atom on Graphene by Molecular Dynamics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The results of studying the effect of geometric and thermodynamic parameters of thermal evaporation and copper deposition on graphene lying on the Cu(111) surface on the adsorption of copper atoms, as well as their surface diffusion, are presented. The simulation was carried out by classical molecular dynamics using chains of Nose–Hoover thermostats. Interatomic interactions were determined by the Tersoff–Brenner, Rosato–Gillop–Legrand, and modified Morse potentials. A simple criterion for the thermalization of adatoms on graphene lying on a Cu(111) surface was formulated and tested. The average length and mean time of free path of a copper atom before and after thermalization at low (7 K) and room temperatures were studied for two evaporation temperatures. The probability of adsorption of a copper atom was found. The distributions along the directions of motion of adatoms during equilibrium diffusion were constructed. The distributions of the free path length and time were shown to have an exponential form. The influence of the Cu(111) substrate on the diffusion of the Cu atom on graphene was studied. The results obtained can be used to simulate the growth of copper nanoclusters on graphene by the kinetic Monte Carlo method.

Авторлар туралы

S. Khudyakov

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: serhmsu@gmail.com
Ресей, Moscow

S. Kolesnikov

Lomonosov Moscow State University

Email: serhmsu@gmail.com
Ресей, Moscow

A. Saletsky

Lomonosov Moscow State University

Email: serhmsu@gmail.com
Ресей, Moscow

Әдебиет тізімі

  1. Wallace P.R. // Phys. Rev. 1947. V. 71. № 9. P. 622. http://doi.org/10.1103/physrev.71.622
  2. Novoselov K.S., Geim А.К., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. // Science. 2004. V. 306. P. 666. http://doi.org/10.1126/science.1102896
  3. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M,I., Grigorieva I.V., Dubonos S.V., Fir- sov A.A. // Nature. 2005. V. 438. P. 197. http://doi.org/10.1038/nature04233
  4. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2009. V. 81. P. 109. http://doi.org/10.1016/j.physrep.2010.07.003
  5. Vozmediano M.A.H., Katsnelson M.I., Guinea F. // Phys. Rep. 2010. V. 496. № 4–5. P. 109. http://doi.org/10.1016/j.physrep.2010.07.003
  6. Nakhmedov E, Nadimi E., Vedaei S., Alekperov O., Tatardar F., Najafov A.I., Abbasov I.I., Saletsky A.M. // Phys. Rev. B. 2019. V. 99. P. 125125. http://doi.org/10.1103/PhysRevB.99.125125
  7. Zheng Zh., Ma Qi., Bi Zh., Barrera S., Liu M.-H., Mao N., Zhang Ya., Kiper N., Watanabe K., Taniguchi T., Kong J., Tisdale W.A., Ashoori R., Gedik N., Fu L.,. Xu S.-Ya, Jarillo-Herrero P. // Nature. 2020. V. 588. P. 71. http://doi.org/10.1038/s41586-020-2970-9
  8. Zhou H., Yu W.J., Liu L., Cheng R., Chen Y., Huang X., Liu Y, Wang Y, Huang Y., Duan X. // Nature Commun. 2013. V 4. P. 2096. http://doi.org/10.1038/ncomms3096
  9. Giovannetti G., Khomyakov P.A., Brocks G., Karpan V.M., Brink J., Kelly P.J. // Phys. Rev. Lett. 2008. V. 101. P. 026803. http://doi.org/10.1103/PhysRevLett.101.026803
  10. Lu Z., Wang Ya. Chen J., Wang J., Zhou Ye, Han S.-T. // Chem. Rev. 2020. V. 120. P. 3941. http://doi.org/10.1021/acs.chemrev.9b00730
  11. Karpan V.M., Giovannetti G., Khomyakov P.A., Talana-na M., Starikov A.A., Zwierzycki M., Brink J., Brocks G., Kelly P.J. // Phys. Rev. Lett. 2007. V. 99. P. 176602. http://doi.org/10.1103/PhysRevLett.99.176602
  12. Sule P., Szendro M., Hwang C., Tapaszto L. // Carbon. 2010. V. 77. P. 1082. http://doi.org/10.1016/j.carbon.2014.06.024
  13. Shi X., Yin Q., Wei Y. // Carbon. 2012. V. 50. P. 3055. http://doi.org/10.1016/j.carbon.2012.02.092
  14. Liu X., Han Y., Evans J.W., Engstfeld A.K., Behm R.J., Tringides M.C., Hupalo M., Lin H.-Q., Huang L., Ho K.-M., Appy D., Thiel P.A., Wang C.-Z. // Progress Surf. Sci. 2015. V. 90. P. 397. http://doi.org/10.1016/j.progsurf.2015.07.001
  15. Soy E., Liang Z., Trenary M. // J. Phys. Chem. C. 2015. V. 119. № 44. P. 24796. http://doi.org/10.1021/acs.jpcc.5b06472
  16. Soy E., Guisinger N., Trenary M. // J. Phys. Chem. B. 2018. V. 122. № 2. Р. 572. http://doi.org/10.1021/acs.jpcb.7b05064
  17. Takahashi K. // 2D Materials. 2014. V. two. № 1. Р. 014001. http://doi.org/10.1088/2053-1583/2/1/014001
  18. Колесников С.В., Сидоренков А.В., Салецкий А.М. // Письма в ЖЭТФ. 2020. Т. 111. Вып. 2. С. 101. http://doi.org/10.31857/S0370274X20020095
  19. Schlick T. Molecular Modeling and Simulation. Springer, 2002.
  20. Hoover W.G. // Phys. Rev. A. 1985. V. 31. № 3. Р. 1695. http://doi.org/10.1103/PhysRevA.31.1695
  21. Martina G.J., Tuckerman M.E., Tobias D.J., Klein M.L. // Mol. Phys. 1996. V. 87. № 5. P. 1117. http://doi.org/10.1080/00268979600100761
  22. Tersoff J. // Phys. Rev. B. 1988. V. 37. № 12. P. 6991. http://doi.org/10.1103/PhysRevB.37.6991
  23. Brenner D.W. // Phys. Rev. B. 1990. V. 42. № 15. P. 9458. http://doi.org/10.1103/PhysRevB.42.9458
  24. Rosato V., Guillope M., Legrand B. // Philos. Mag. A. 1989. V. 59. № 2. P. 2321. http://doi.org/10.1080/01418618908205062
  25. Negulyaev N.N., Stepanyuk V.S., Bruno P., Diekhoner L., Wahl P., Kern K. // Phys. Rev. B. 2008. V. 77. P. 125437. http://doi.org/10.1103/PhysRevB.77.125437
  26. Колесников С.В., Салецкий А.М., Докукин С.А., Клавсюк А.Л. // Математическое моделирование. 2018. Т. 30. № 2. P. 48. http://doi.org/10.1134/S2070048218050071

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Trajectory of copper atom on graphene on Cu(111) surface after thermalization, molecular dynamics simulation time tsim = 1 ns, number of steps Nsim = 500000

Жүктеу (407KB)
3. Fig. 2. Dependence of the mean free path length of the copper atom before thermalization L1 on the polar angle of incidence θ and its approximation L1(θ) = -22.19θ3 + 53.84θ2 - 9.17θ + 7. 48 (a); dependence of the adsorption probability on θ (approximation Radsorb(θ) = 1.1θ2 - 3.2θ + 0.94) (b); angle distribution φ of the mean free path length of the copper atom after thermalization L (1) and approximation L = cos(6φ + π) + 4.7, θ = 80° (2) (c). In all cases, Tgr = 300 K, Tisp = 1400 K. In the formulas for approximation, the angles φ, θ are expressed in radians

Жүктеу (291KB)
4. Fig. 3. Dependence of the mean free path length of the copper atom before thermalization L1 on the angle φ in the presence or absence of the substrate at Tgr = 7 K, Tisp = 1400 K (a), at Tgr = 300 K, Tisp = 1400 K (b); dependence of the adsorption probability on the angle φ in the presence or absence of the substrate at Tgr = 300 K, Tisp = 1400 K (c). Polar angle of incidence θ = 80°

Жүктеу (366KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>