Rotating Water-Jet-Cooled Target for Compact Neutron Source
- Authors: Shvets P.V1, Prokopovich P.A1, Fatyanov E.I1, Sidorkin S.F2, Goihman A.Y.1
-
Affiliations:
- I. Kant Baltic Federal University
- Institute for Nuclear Research RAS
- Issue: No 5 (2025)
- Pages: 29-36
- Section: Articles
- URL: https://journals.rcsi.science/1028-0960/article/view/356809
- DOI: https://doi.org/10.7868/S3034573125050043
- ID: 356809
Cite item
Abstract
Compact neutron sources, including those based on bombardment of beryllium by a proton beam (for instance, DARIA project), assume using of targets with high thermal loading (~10 kW). To dissipate this heating power, we previously developed a concept of a rotating water-cooled target. Each proton pulse hit a new beryllium plate allowing distributing heating power over a large area and achieving good heat removal from the system. However, the cooling was not ideal; high water flow was required leading to significant pressures near beryllium segments and creating a threat of their destruction during the operation of the device. Here, we consider a new and more efficient concept of water cooling suggesting that water flows normally to the cooled surfaces (jet cooling). Thermodynamical numerical simulations allowed us to estimate maximum temperature of targets and water pressure near the beryllium segments depending on the cooling water flow. We showed a significant improvement of all parameters of the device compared to the old concept of target assembly.
About the authors
P. V Shvets
I. Kant Baltic Federal University
Author for correspondence.
Email: pshvets@kantiana.ru
Research and Educational Center "Functional Nanomaterials" Kaliningrad, Russia
P. A Prokopovich
I. Kant Baltic Federal University
Email: pshvets@kantiana.ru
Research and Educational Center "Functional Nanomaterials"
Kaliningrad, RussiaE. I Fatyanov
I. Kant Baltic Federal University
Email: pshvets@kantiana.ru
Research and Educational Center "Functional Nanomaterials"
Kaliningrad, RussiaS. F Sidorkin
Institute for Nuclear Research RAS
Email: pshvets@kantiana.ru
Moscow, Russia
A. Yu Goihman
I. Kant Baltic Federal University
Email: pshvets@kantiana.ru
Research and Educational Center "Functional Nanomaterials"
Kaliningrad, RussiaReferences
- Iyengar P.K. // Nucl. Instrum. Methods Phys. Res. A. 1987. V. 255. № 1–2. P. 253. https://www.doi.org/10.1016/0168-9002(87)91111-9
- Carpenter J.M. // EPJ Web Conf. 2020. V. 231. P. 01001. https://www.doi.org/10.1051/epjconf/202023101001
- Grigoriev S.V., Kovalenko N.A., Pavlov K.A., Moskvin E.V., Syromyatnikov V.G., Grigoryeva N.A. // Bull. RAS: Phys. 2023. V. 87. № 11. P. 1561. https://www.doi.org/10.3103/S1062873823703690
- Subbotina V.V., Pavlov K.A., Kovalenko N.A., Konik P.I., Voronin V.V., Grigoriev S.V. // Nucl. Instrum. Methods Phys. Res. A. 2021. V. 1008. P. 165462. https://www.doi.org/10.1016/j.nima.2021.165462
- Skalyga V.A., Izotov I.V., Vybin S.S., Kulevoy T.V., Kropachev G.N., Sitnikov A.L., Grigoriev S.V. // J. Phys: Conf. Series. 2022. V. 2244. P. 012092. https://www.doi.org/10.1088/1742-6596/2244/1/012092
- Pavlov K.A., Konik P.I., Kovalenko N.A., Kulevoy T.V., Serebrennikov D.A., Subbotina V.V., Pavlova A.E., Grigorev S.V. // Crystallography Reports. 2022. V. 67. P. 3. https://www.doi.org/10.1134/S1063774522010096
- Kropachev G.N., Kulevoy T.V., Sitnikov A.L., Vinogradov S.V., Khabibullina E.R., Skachkov V.S., Sergeeva O.S. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 759. https://www.doi.org/10.1134/S1027451023040079
- Kilmetova I.V., Kozlov A.V., Kropachev G.N., Kulevoy T.V., Liakin D.A., Sergeeva O.S., Skachkov V.S., Stasevich Yu.B. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. V. 17. № 4. P. 772. https://www.doi.org/10.1134/s1027451023040067
- Yamagata Y., Hirota K., Ju J., Wang S., Morita S., Kato J., Otake Y., Takeami A., Seki Y., Yamada M., Ota H., Bautista U., Jia Q. // J. Radioanalyt. Nucl. Chem. 2015. V. 305. P. 787. https://www.doi.org/10.1007/s10967-015-4059-8
- Moroz A.R., Kovalenko N.A., Grigoriev S.V. // J. Neutron Res. 2022. V. 24. P. 1. https://www.doi.org/10.3233/JNR-220025
- Baxter D., Gutberler T., Otake Y., Ott F., Wang X. // J. Neutron Res. 2021. V. 23. P. 99. https://www.doi.org/10.3233/JNR-210012
- Terroh S., Sordo F., Magán M., Ghiglino A., Martinez F., de Vicente P.J., Vivanco R., Thomsen K., Períado J.M., Bermejo F.J., Abdnades A. // Nucl. Instrum. Methods Phys. Res. A. 2013. V. 724. P. 34. https://doi.org/10.1016/j.nima.2013.04.072
- Shvets P.V., Prokopovich P.A., Fatyanov E.I., Clemeniyev E.S., Moroz A.R., Kovalenko N.A., Golhman A.Yu. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 792. https://www.doi.org/10.1134/S102745102304016X
- Agostini B., Fabbri M., Park J.E., Wojtan L., Thome J.R., Bruno M. // Heat Transfer Engineering. 2007. V. 28. № 4. P. 258. https://www.doi.org/10.1080/01457630601117799
- COMSOL Multiphysics → v. 6.1 (2022). COMSOL AB, Швеция. www.comsol.com. Дата посещения 31.01.2025
- Abraham J.P., Sparrow E.M., Tong J.C.K. // Int. J. Heat Mass Transf. 2009. V. 52. P. 557. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.009
Supplementary files


