On the Characteristics and Role of Cottrell Co-Segregations of Carbon and Hydrogen in Strain Aging and Embrittlement of a Number of Steels

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work is devoted to the study of the characteristics of Cottrell’s phase-like “atmospheres” (carbohydride-like cosegregations of carbon and hydrogen) on dislocations in the martensitic and ferritic components in high-strength austenitic steel with transformation-induced plasticity due to the problems of aging, hydrogen embrittlement and degradation of a number of steels during operation. Particular attention is paid to in-depth processing (new technique) and analysis of the thermal desorption spectra of hydrogen for a number of steels and iron (as a reference material). The methods of thermodynamic analysis, the methodology for determining the thermodynamic characteristics (hydrogen concentrations, activation energies and rate constants of desorption processes) and the nature of “hydrogen traps” by analyzing the most representative thermal desorption data, comparing with the corresponding data obtained by three-dimensional atomic probe tomography, and also comparisons with the corresponding theoretical data. The conducted studies have shown the possibility of the formation of Cottrell carbohydride-like cosegregations of carbon and hydrogen on dislocations in martensitic and ferritic phases in high-strength austenitic steel with high plasticity induced by transformation, in particular, they made it possible for the first time to determine the binding energies of hydrogen with carbohydride-like cosegregations of carbon and hydrogen on dislocations in martensitic and ferritic phases.

About the authors

Yu. S. Nechaev

Scientific Center of metals science and physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

Author for correspondence.
Email: yuri1939@inbox.ru
Russia, 105005, Moscow

E. A. Denisov

Physics Department, St. Petersburg State University

Email: yuri1939@inbox.ru
Russia, 199034, St. Petersburg

N. A. Shurygina

Scientific Center of metals science and physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

Email: yuri1939@inbox.ru
Russia, 105005, Moscow

A. O. Cheretaeva

Institute of Progressive Technologies, Togliatti State University

Email: yuri1939@inbox.ru
Russia, 445020, Togliatti

N. S. Morozov

Scientific Center of metals science and physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

Email: yuri1939@inbox.ru
Russia, 105005, Moscow

V. P. Filippova

Scientific Center of metals science and physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

Email: yuri1939@inbox.ru
Russia, 105005, Moscow

N. M. Alexandrova

Scientific Center of metals science and physics, I.P. Bardin Central Research Institute for Ferrous Metallurgy

Email: yuri1939@inbox.ru
Russia, 105005, Moscow

References

  1. Marquis E.A., Hyde J.M. // Mater. Sci. Eng. R.: Rep. 2010. V. 69. Iss. 4–5. P. 37. https://www.doi.org/10.1016/j.mser.2010.05.001
  2. Pareige P., Cadel E., Sauvage X., Deconihout B., Blavette D., Mangelinck D. // Intern. J. Nanotechnology. 2008. V. 5. № 6–8. P. 592. https://www.doi.org/10.1504/IJNT.2008.018684
  3. Blavette D., Duguay S. // Eur. Phys. J. Appl. Phys. 2014. V. 68. P. 10101. https://www.doi.org/10.1051/epjap/2014140060
  4. Herbig M., Choi P., Raabe D. // Ultramicroscopy. 2015. V. 153. P. 32. https://www.doi.org/10.1016/j.ultramic.2015.02.003
  5. Blavette D., Cadel E., Fraczkiewicz A., Menand A. // Science. 1999. V. 286. № 5448. P. 2317. https://www.doi.org/10.1126/science.286.5448.2317
  6. Cadel E., Lemarchand D., Gay A.-S., Fraczkiewicz A., Blavette D. // Scripta Materialia. 1999. V. 41. № 4. P. 421. https://www.doi.org/10.1016/S1359-6462(99)00106-2
  7. Calonne O., Fraczkiewicz A., Louchet F. // Scripta Materialia. 2000. V. 43. № 1. P. 69. https://www.doi.org/10.1016/S1359-6462(00)00367-5
  8. Cadel E., Launois S., Fraczkiewicz A., Blavette D. // Phil. Mag. Letters. 2000. V. 80. № 11. P. 725. https://www.doi.org/10.1080/09500830050192945
  9. Blavette D., Fraczkiewicz A., Cadel E. // J. Phys. IV France. 2000. V. 10. № PR6. P. 111. https://www.doi.org/10.1051/jp4:2000619
  10. Cadel E., Fraczkiewicz A., Blavette D. // Mater. Sci. Engineering A. 2001. V. 309–310. P. 32. https://www.doi.org/10.1016/S0921-5093(00)01688-9
  11. Cottrell A.H., Bilby B.A. // Proc. Phys. Soc. Section A. 1949. V. 62. № 308. P. 49.
  12. Cottrell A.H. Dislocations and Plastic Flow in Crystals. Oxford: Clarendon, 1953. 134 p.
  13. Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат, 1972. 600 с.
  14. Nechaev Yu.S., Öchsner A. // DDF. 2019. V. 391. P. 246. https://www.doi.org/10.4028/www.scientific.net/DDF. 391.246
  15. Wilde J., Cerezo A., Smith G.D.W. // Scripta Materialia. 2000. V. 43. № 1. P. 39. https://www.doi.org/10.1016/S1359-6462(00)00361-4
  16. Kahn R.W. The Coming of Materials Science. Pergamon Materials Series: Cambridge Univ. Press, 2001. 571 c.
  17. Нечаев Ю.С. // УФН. 2011. Т. 181. № 5. С. 483. https://www.doi.org/10.3367/UFNr.0181.201105b.0483
  18. Нечаев Ю.С. // УФН. 2008. Т. 178. № 7. С. 709. https://www.doi.org/10.3367/UFNr.0178.200807b.0709
  19. Нечаев Ю.С. // Материаловедение. 2009. № 3. С. 50.
  20. Чувильдеев В.Н. // Материаловедение. 2009. № 4. С. 60.
  21. Нечаев Ю.С. // Материаловедение. 2009. № 6. С. 55.
  22. Нечаев Ю.С. // Успехи физических наук. 2001. Т. 171. № 11. С. 1251. https://www.doi.org/10.3367/UFNr.0171.200111e.1251
  23. Nechaev Yu.S., Filippov G.A. // DDF. 2001. V. 194–199. P. 1099. https://www.doi.org/10.4028/www.scientific.net/DDF. 194-199.1099
  24. Nechaev Yu.S. // Solid State Phenomena. 2008. V. 138. P. 91. https://www.doi.org/10.4028/www.scientific.net/ SSP.138.91
  25. Nechaev Yu.S., Burzhanov A.A., Filippov G.A. // Adv. in Mater. Sci. 2007. V. 7. № 1. P. 166.
  26. Nechaev Yu.S., Iourtchenko D.V., Hirschberg J.G., Veziroglu T.N. // Int. J. Hydrogen Energy. 2004. V. 29. № 13. P. 1421. https://www.doi.org/10.1016/j.ijhydene.2004.01.011
  27. Nechaev Yu.S. // DDF. 2018. V. 385. P. 120. https://www.doi.org/10.4028/www.scientific.net/ DDF.385.120
  28. Свелин Р.А. Термодинамика твердого состояния. М.: Металлургия, 1968. 316 с.
  29. Kirchheim R. // Progress in Mater. Sci. 1988. V. 32. № 4. P. 261. https://www.doi.org/10.1016/0079-6425(88)90010-2
  30. Kirchheim R. // Acta Metall. 1981. V. 29. № 5. P. 835. https://www.doi.org/10.1016/0001-6160(81)90126-7
  31. Oriani R. // Acta Mater. 1970. V. 18. № 1. P. 147. https://www.doi.org/10.1016/0001-6160(70)90078-7
  32. Нечаев Ю.С., Родионова И.Г., Удод К.А., Немтинов А.А., Митрофанов А.В. // Проблемы черной металлургии и материаловедения. 2013. № 4. С. 5.
  33. Nechaev Yu.S., Alexandrova N.M., Cheretaeva A.O., Kuznetsov V.L., Öchsner A., Kostikova E.K., Zaika Yu.V. // Int. J. Hydrogen Energy. 2020. V. 45. № 46. P. 25030. https://www.doi.org/ 10.1016/j.ijhydene.2020.06.242
  34. Nechaev Yu.S., Alexandrova N.M., Shurygina N.A., Cheretaeva A.O., Denisov E.A., Kostikova E.K. // Bull. RAS: Physics. 2021. V. 85. № 7. P. 701. https://www.doi.org/ 10.3103/S1062873821070169
  35. Zaika Yu.V., Kostikova E.K., Nechaev Yu.S. // Techn. Phys. 2021. V. 91. P. 210. https://www.doi.org/10.1134/S1063784221020250
  36. Depover T., Verbeken K. // Int. J. Hydrogen Energy. 2018. V. 43. P. 3050. https://www.doi.org/10.1016/j.ijhydene.2017.12.109
  37. Lee J., Lee T., Kwon Y.J., Mun D.J., Yoo J.Y., Lee C.S. // Corros. Rev. 2015. V. 33. P. 433. https://www.doi.org/10.1515/corrrev-2015-0052
  38. Depover T., Monbaliu O., Wallaert E., Verbeken K. // Int. J. Hydrogen Energy. 2015. V. 40. P. 16977. https://www.doi.org/10.1016/j.ijhydene.2015.06.157
  39. Kissinger H. // Anal. Chem. 1957. V. 29. № 11. P. 1702. https://www.doi.org/ 10.1021/ac60131a045
  40. Legrand E., Oudriss A., Savall C., Bouhattate J., Feaugas X. // Int. J. Hydrogen Energy. 2015. V. 40. № 6. P. 2871. https://www.doi.org/10.1016/j.ijhydene.2014.12.069
  41. Drexler A., Vandewalle L., Depover T., Verbeken K., Domitner J. // Int. J. Hydrogen Energy. 2021. V. 46. P. 39590. https://www.doi.org/10.1016/j.ijhydene.2021.09.171
  42. Kirchheim R. // Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016. V. 47. P. 672. https://www.doi.org/10.1007/s11661-015-3236-2
  43. Escobar D.P., Verbeken K., Duprez L., Verhaege M. // Mater. Science and Engineering: A. 2012. V. 551. P. 50. https://www.doi.org/ 10.1016/j.msea.2012.04.078
  44. Escobar D.P., Depover T., Duprez L., Verbeken K., Verhaege M. // Acta Mater. 2012. V. 60. P. 2593. https://www.doi.org/10.1016/j.actamat.2012.01.026
  45. Hagi H. // Mater. Trans. JIM. 1994. V. 35. № 2. P. 112. https://www.doi.org/10.2320/matertrans1989.35.112
  46. Kedzierzawski P., Oriani R.A., Hirth J.P., Smialowski M. // Acta Metallurgica et Materialia. 1985. V. 39. P. 271.
  47. Кулабухова Н.А. Исследование процессов абсорбции и диффузии водорода в ГЦК металлах методом молекулярной динамики: Дисс. ... канд .ф.-м.н.: 01.04.07. Барнаул: Алтайский государственный технический университет им. И.И. Ползунова, 2014. 129 с.
  48. Ганеев А.В. Особенности формирования сегрегаций и карбидов на границах зерен в ультрамелкозернистых углеродистых сталях, полученных интенсивной пластической деформацией кручением: Диcс. ... канд. ф.-м.н.: 01.04.07. Уфа: ФГБОУ ВО “Уфимский государственный авиационный технический университет”, 2019. 140 с.
  49. Мишетьян А.Р. Особенности механизмов разрушения и деформационного старения в зависимости от структурного состояния низколегированных трубных сталей: Диcс. ... канд. т.н.: 2.6.1. Москва: ФГУП ЦНИИчермет им. И.П. Бардина, 2021. 145 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (271KB)
3.

Download (80KB)
4.

Download (270KB)
5.

Download (260KB)
6.

Download (71KB)

Copyright (c) 2023 Ю.С. Нечаев, Е.А. Денисов, Н.А. Шурыгина, А.О. Черетаева, Н.С. Морозов, В.П. Филиппова, Н.М. Александрова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies