Determination of the Thicknesses of Monolayer Coatings Exposed to Ion Bombardment by X-Ray Photoelectron Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The samples of monocrystalline silicon coated with golden nanolayers were investigated. The samples were obtained by two methods, namely, gold sputtering using Xe+ beam with the initial energy of 7 keV and the method of thermal deposition. Preliminary analysis of samples based on the deciphering of energy spectra of reflected protons with an initial energy of 25 keV was performed. By methods of X-ray photoelectron spectroscopy with angular resolution (Angle Resolved XPS) thicknesses of gold coatings on silicon were determined. Analysis of samples using X-ray photoelectron spectroscopy was performed by comparing the intensities of Au 4f and Si 2p maxima measured at different angles of photoelectron detection. The calculations carried out by traditional methods indicate a marked dependence of the calculated gold coating thickness on the angle of sight for the case of monolayer and submonolayer coatings. It is shown that such discrepancy is possible if gold is deposited on silicon in the form of clusters forming islands rather than in the form of a continuous homogeneous coating. The possibility of gold islands moving relative to silicon in the upper silicon layers that have been subjected to proton bombardment at sliding angles to the surface is discussed.

About the authors

V. P. Afanas’ev

National Research University “MPEI”

Author for correspondence.
Email: v.af@mail.ru
Russia, 111250, Moscow

L. G. Lobanova

National Research University “MPEI”

Email: v.af@mail.ru
Russia, 111250, Moscow

D. N. Selyakov

National Research University “MPEI”

Email: v.af@mail.ru
Russia, 111250, Moscow

M. A. Semenov-Shefov

National Research University “MPEI”

Email: v.af@mail.ru
Russia, 111250, Moscow

References

  1. Bulgadaryan D., Sinelnikov D., Kurnaev V., Efimov N., Borisyuk P., Lebedinskii Y. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 438. P. 54. https://doi.org/10.1016/j.nimb.2018.10.043
  2. Машкова Е.С., Молчанов В.А. Рассеяние ионов средних энергий поверхностями твердых тел. М.: Атомиздат, 1980. 256 с.
  3. Курнаев В.А., Машкова Е.С., Молчанов В.А. Отражение легких ионов от поверхности твердого тела. М.: Энергоатомиздат, 1985. 192 с.
  4. Mashkova E.S., Molchanov V.A. Medium Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
  5. Рязанов М.И., Тилинин И.С. Исследование поверхности по обратному рассеянию частиц. М.: Энергоатомиздат, 1985. 150 с.
  6. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids. New York: Pergamon, 1985. 321 p.
  7. Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995. 319 с.
  8. Hoffman S. Auger and X-Ray Photoelectron Spectroscopy in Material Science. Berlin: Springer Verlag, 2013. 528 p.
  9. Steffen J., Hofmann S. // Surf. Interface Anal. 1988. V. 11. P. 617.
  10. Afanas’ev V.P., Efremenko D.S., Kaplya P.S. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2018. V. 12. № 6. P. 1182. https://www.doi.org/10.1134/S1027451018050580
  11. Afanas’ev V.P., Kaplya P.S. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2017. V. 11. № 6. P. 1296. https://www.doi.org/10.1134/S1027451017050226
  12. Kaplya P.S., Afanas’ev V.P. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2017. V. 11. № 5. P. 963. https://www.doi.org/10.1134/S1027451017050056
  13. Jablonski A. // Surf. Sci. 2019. V. 688. P. 14. https://www.doi.org/10.1016/j.susc.2019.05.004
  14. Смирнов Б.М. // УФН. 2017. Т. 187. С. 1329. https://www.doi.org/10.3367/UFNe.2017.02.038073
  15. Trzhaskovskaya M.B., Nefedov V.I., Yarzhemsky V.G. // At. Data Nucl. Data Tables. 2001. V. 77. P. 97. https://www.doi.org/10.1006/adnd.2000.0849
  16. Trzhaskovskaya M.B., Nefedov V.I., Yarzhemsky V.G. // At. Data Nucl. Data Tables. 2002. V. 82. P. 257. https://www.doi.org/10.1006/adnd.2002.0886
  17. Tanuma S., Powell C.J., Penn D.R. // Surf. Interface Anal. 2005. V. 37. P. 1. https://www.doi.org/10.1002/sia.1997
  18. Tougaard S. // J. Vac. Sci. Technol. A. 1996. V. 14. № 3. P. 1415. https://www.doi.org/10.1116/1.579963
  19. Fairley N., Fernandez V., Richard-Plouet M., Guillot-Deudon C., Walton J., Smith E., Flahaut D., Greiner M., Biesinger M., Tougaard S., Morgan D., Baltrusaitis J. // Appl. Surf. Sci. 2021. V. 5. P. 100112. https://www.doi.org/10.1016/j.apsadv.2021.100112
  20. Булгадарян Д.Г. Рассеяние протонов кэВ-ных энергий как инструмент анализа тонких слоев на поверхности материалов: Дис. … канд. физ.-мат. наук: 01.04.08. М.: МИФИ, 2020. 116 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (228KB)
3.

Download (70KB)
4.

Download (129KB)
5.

Download (138KB)
6.

Download (66KB)
7.

Download (42KB)
8.

Download (71KB)

Copyright (c) 2023 В.П. Афанасьев, Л.Г. Лобанова, Д.Н. Селяков, М.А. Семенов-Шефов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies