Magnetotransport Studies of (Cd1 – xZnx)3As2 at High Pressures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Resistivity ρ, magnetoresistance Δρxx0(P) and Hall constant RH were measured in (Cd1 – xZnx)3As2 sample with х = 0.31 under the action of all-round pressure and at various temperatures in the range (80–400) K. These samples were obtained by the modified Bridgman method. The composition of the samples and their homogeneity were controlled by X-ray phase analysis and energy-dispersive X-ray spectroscopy. The results of energy dispersive X-ray spectroscopy showed that the distribution of elements in the sample is uniform. It was found that the resistivity increases with increasing temperature, and the change in ρ(T) has a metallic character. The Hall constant RH in the field decreases slightly with increasing temperature and retains a negative sign throughout the entire range under study. With increasing pressure, anomalies were observed in the baric dependences of the electrical resistivity ρ(Р), magnetoresistance Δρxx0(Р) and the Hall coefficient RH(Р). Increasing the confining pressure leads to suppression of the positive magnetoresistance. In the phase transition region, the negative magnetoresistance at a pressure Р (2.4–2.7) GPa in a field of 5 kOe is the maximum value of 1.7.

About the authors

L. A. Saypulaeva

Institute of Physics, Russian Academy of Sciences Kh.I. Amirkhanov Dagestan Federal Research Center RAS

Author for correspondence.
Email: l.saypulaeva@gmail.com
Russia, 367015, Makhachkala

V. S. Zakhvalinskii

Belgorod State National Research University

Email: l.saypulaeva@gmail.com
Russia, 308015, Belgorod

A. G. Alibekov

Institute of Physics, Russian Academy of Sciences Kh.I. Amirkhanov Dagestan Federal Research Center RAS

Email: l.saypulaeva@gmail.com
Russia, 367015, Makhachkala

Z. Sh. Pirmagomedov

Institute of Physics, Russian Academy of Sciences Kh.I. Amirkhanov Dagestan Federal Research Center RAS

Email: l.saypulaeva@gmail.com
Russia, 367015, Makhachkala

M. M. Gadzhialiev

Institute of Physics, Russian Academy of Sciences Kh.I. Amirkhanov Dagestan Federal Research Center RAS

Email: l.saypulaeva@gmail.com
Russia, 367015, Makhachkala

S. F. Marenkin

Institute of General and Inorganic Chemistry N.S. Kurnakov of the RAS

Email: l.saypulaeva@gmail.com
Russia, 119991, Moscow

A. I. Ril

Institute of General and Inorganic Chemistry N.S. Kurnakov of the RAS

Email: l.saypulaeva@gmail.com
Russia, 119991, Moscow

A. V. Kochura

Southwestern State University

Email: l.saypulaeva@gmail.com
Russia, 305040, Kursk

References

  1. Crassee I., Sankar R., Lee W.-L., Akrap A., Orlita M. // Phys. Rev. Materials. 2018. V. 2. P. 120302. https://www.doi.org/10.1103/PhysRevMaterials.2.120302
  2. Wang Z., Weng H., Wu Q., Dai X., Fang Z. // Phys. Rev. B. 2013. V. 88. P. 125427. https://www.doi.org/10.1103/PhysRevB.88.125427
  3. Wang Z., Sun Y., Chen X.-Q., Franchini C., Xu G., Weng H., Dai X., Fang Z. // Phys. Rev. B. 2012. V. 85. P. 195320. https://www.doi.org/10.1103/PhysRevB.85.195320
  4. Liu Z.K., Jiang J., Zhou B., Wang Z.J., Zhang Y., Weng H.M., Prabhakaran D., Mo S.-K., Peng H., Dudin P., Kim T., Hoesch M., Fang Z., Dai X., Shen Z.X., Feng D.L., Hussain Z., Chen Y.L. // Nature Materials. 2014. V. 13. № 7. P. 677. https://www.doi.org/10.1038/nmat3990
  5. Borisenko S., Gibson Q., Evtushinsky D., Zabolotnyy V., Buchner B., Cava R.J. // Phys. Rev. Lett. 2014. V. 113. P. 027603. https://www.doi.org/10.1103/PhysRevLett.113.027603
  6. Jeon S., Zhou B.B., Gyenis A., Feldman B.E., Kimchi I., Potter A.C., Gibson Q.D., Cava R.J., Vishwanath A., Yazdani A. // Nature Materials. 2014. V. 13. № 9. P. 851. https://www.doi.org/10.1038/nmat4023.82
  7. Li H., Wang H.-W., He H., Wang J., Shen S.-Q. // Phys. Rev. B. 2018. V. 97. P. 201110. https://www.doi.org/10.1103/PhysRevB.97.201110
  8. Wu M., Zheng G., Chu W., Liu Y., Gao W., Zhang H., Lu J., Han Y., Zhou J., Ning W., Tian M. // Phys. Rev. B. 2018. V. 98. P. 161110. https://www.doi.org/10.1103/PhysRevB.98.161110
  9. Liang T., Gibson Q., Ali M.N., Liu M., Cava R.J., Ong N.P. // Nature Materials. 2015. V. 14. № 3. P. 280. https://www.doi.org/10.1038/nmat4143
  10. Turner W.J., Fischler A.S., Reese W.E. // Phys. Rev. 1961. V. 121. P. 759. https://www.doi.org/10.1103/PhysRev.121.759
  11. Zheng G., Wu M., Zhang H., Chu W., Gao W., Lu J., Han Y., Yang J., Du H., Ning W., Zhang Y., Tian M. // Phys. Rev. B. 2017. V. 96. P. 121407. https://www.doi.org/10.1103/PhysRevB.96.121407
  12. Hasan M.Z., Kane C.L. // Rev. Mod. Phys. 2010. V. 82. P. 3045. https://www.doi.org/10.1103/RevModPhys.82.3045
  13. Burkov A.A., Balents L. // Phys. Rev. Lett. 2011. V. 107. P. 127205. https://www.doi.org/10.1103/PhysRevLett.107.127205
  14. Wan X., Turner A.M., Vishwanath A., Savrasov S.Y. // Phys. Rev. B. 2011. V. 83. P. 205101. https://www.doi.org/10.1103/PhysRevB.83.205101
  15. Qi X.-L., Zhang S.-C. // Rev. Mod. Phys. 2011. V. 83. P. 1057. https://www.doi.org/10.1103/RevModPhys.83.1057
  16. Fu L., Kane C.L. // Phys. Rev. Lett. 2008. V. 100. P. 096407. https://www.doi.org/10.1103/PhysRevLett.100.096407.83
  17. He L., Jia Y., Zhang S., Hong X., Jin C., Li S. // Npj Quantum Materials. 2016. V. 1. № 1. P. 16014. https://www.doi.org/10.1038/npjquantmats.2016.14
  18. Arushanov E.K. // Prog. Cryst. Growth Characterization Mater. 1992. V. 25. № 3. P. 131.
  19. Weglowski S., Lukaszewicz K. // Bull. Acad. Polon. Sci. Ser. Sci. Chim. 1968. V. 16. № 4. P. 177.
  20. Wagner R.J., Palik E.D., Swiggard E.M. // J. Phys. Chem. Solids Suppl. 1971. V. 1. P. 471.
  21. Lu H., Zhang X., Bian Y., Jia S. // Sci. Rep. 2017. V. 7. № 1. P. 3148. https://www.doi.org/10.1038/s41598−017−03559−2
  22. Żdanowicz L., Żdanowicz W. // Phys. Stat. Sol. 1964. V. 6. P. 227.
  23. Żdanowicz W., Lukaszewicz K., Trzebiatowski W. // Bull. Acad, Pol. Sci., Ser. Chim. 1964. V. 12. P. 169.
  24. Рубцов В.А., Трухан В.М., Якимович В.Н. // Доклады АН БССР. 1990. Т. 54. № 5. С. 407.
  25. Rogers L.M., Jenkins R.M., Crocker A.J. // J. Phys. D: Appl. Phys. 1971. V. 4. P. 793.
  26. Galeeva A.V., Krylov I.V., Drozdov K.A., Knjazev A.F., Kochura A.V., Kuzmenko A.P., Zakhvalinskii V.S., Danilov S.N., Ryabova L.I., Khokhlov D.R. // Belstein J. Nanotechnology. 2017. V. 8. № 1. P. 167. https://www.doi.org/10.3762/bjnano.8.17
  27. Mollaev A.Yu., Saypulaeva L.A., Arslanov R.K., Gabibov S.F., Marenkin S.F. High Press. Res. 2002. V. 22. 1. 181. https://www.doi.org/10.1080/08957950211335
  28. Cisowski J., Zdanowicz W. // Phys. Stat. Sol. 1973. V. 19. P. 741. https://www.doi.org/10.1002/PSSA.2210190241
  29. Khvostantsev L.G., Slesarev V.N., Brazhkin V.V. // High Pressure Res. 2004. V. 24. P. 371. https://www.doi.org/10.1080/08957950412331298761
  30. Ivanov O., Zakhvalinskii V., Nikulicheva T., Yaprintsev M., Ivanichikhin S. // Phys. Status Solidi Rapid Res. Lett. 2018. V. 12. №. 12. P. 1800386. https://www.doi.org/10.1002/pssr.201800386

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (131KB)
3.

Download (176KB)
4.

Download (364KB)
5.

Download (690KB)
6.

Download (35KB)
7.

Download (37KB)
8.

Download (39KB)
9.

Download (49KB)
10.

Download (98KB)
11.

Download (57KB)
12.

Download (75KB)

Copyright (c) 2023 Л.А. Сайпулаева, В.С. Захвалинский, А.Г. Алибеков, З.Ш. Пирмагомедов, М.М. Гаджиалиев, С.Ф. Маренкин, А.И. Риль, А.В. Кочура

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies