Choice of the Target Material for a Compact Neutron Source at a Proton Energy of 20–100 MeV

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Be, Nb, Ta and W are considered as candidate target materials for a compact neutron source. The thermal characteristics and the hydrogen diffusion coefficients are taken into account. Using the simulation of particle transport in the PHITS program, estimates are obtained for the neutron yield when the target is irradiated with protons of various energies. Different optimal materials correspond to different energy ranges. The best results at energies up to 20 MeV are shown by Be, 20–35 MeV by Nb, and above 35 MeV by Ta. The last two materials have an increased blistering resistance compared to beryllium, but lose in thermal conductivity. An increase in the energy of incident protons also leads to an increase in the number of neutrons generated per one source proton due to a reduced time of the Coulomb interaction between a particle and the target atom nucleus.

About the authors

А. R. Moroz

National Research Center “Kurchatov Institute”–PNPI; Saint Petersburg State University

Author for correspondence.
Email: moroz_ar@pnpi.nrcki.ru
Russia, 188300, Gatchina; Russia, 199034, St. Petersburg

N. A. Kovalenko

National Research Center “Kurchatov Institute”–PNPI

Email: moroz_ar@pnpi.nrcki.ru
Russia, 188300, Gatchina

References

  1. Low Energy Accelerator-Driven Neutron Sources: Rep. League of Advanced European Neutron Sources; Executor: hoc working group CANS LENS Ad, 2020.
  2. Tаскаeв С.Ю. // Физика элементарных частиц и атомного ядра. 2015. Т. 46. Вып. 6. С. 1770.
  3. Sordo F., Fernández-Alonso F., Terrón S., Magán M., Ghiglino A., Martinez F., Bermejo F.J., Perlado J.M. // Phys. Procedia. 2014. V. 60. P. 125.
  4. Gutberlet T. Conceptual Design Report-Jülich High Brilliance Neutron Source (HBS). Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2020.
  5. Annighofer S.N., Meuriot J.-L., Tessier O., Permingeat P., Sauce Y., Chauvin N., Senee F., Schwindling J., Ott F. A Solid Beryllium Target Design for SONATE // Proc. Int. Symposium UCANS8. Paris, France, July, 8–11, 2019.
  6. Мурзина Е.А. Взаимодействие излучений высокой энергии с веществом: Учеб. пособие. М.: Изд-во МГУ, 1990. 369 с.
  7. Yamagata Y., Hirota K., Ju J., Wang S., Morita S.Y., Kato J.I., Otake Y., Taketani A., Sek, Y., Yamada M., Ota H., Bautista U., Jia Q. // J. Radioanal. Nucl. Chem. 2015. V. 305. № 3. P. 787.
  8. Ferry L., Virot F., Ferro Y., Matveev D., Linsmeier C., Barrachin M. // J. Nucl. Mater. 2019. V. 524. P. 323.
  9. Liu Y.N., Wu T., Yu Y., Li X.C., Shu X., Lu G.H. // J. Nucl. Mater. 2014. V. 455. № 1–3. P. 676.
  10. Wipf H. // Phys. Scripta. 2001. V. 2001. № T94. P. 43.
  11. Bauer H.C., Völkl J., Tretkowski J., Alefeld G. // Z. Physik. B. 1978. B. 29. № 1. S. 17.
  12. Ziegler J.F., Ziegler M.D., Biersack J.P. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 11–12. P. 1818.
  13. Немец О.Ф., Гофман Ю.В. Справочник по ядерной физике. Киев, Наукова думка, 1975. 416 с.
  14. Sato T., Iwamoto Y., Hashimoto S., Ogawa T., Furuta T., Abe S.I., Kai T., Tsai P.-E., Matsuda N., Iwase H., Shigyo N., Sihver L., Niita K. // J. Nucl. Sci. Technol. 2018. V. 55. № 6. P. 684.
  15. Koning A.J., Rochman D., Sublet J.C., Dzysiuk N., Fleming M., Van der Marck S. // Nucl. Data Sheets. 2019. V. 155. P. 1.
  16. Boudard A., Cugnon J., David J.C., Leray S., Mancusi D. // Phys. Rev. C. 2013. V. 87. № 1. P. 014606.
  17. Zakalek P., Doege P.E., Baggemann J., Mauerhofer E., Brückel T. // EPJ Web Conf. 2020. V. 231. P. 03006.
  18. Аксенов В.Л. // Физика элементарных частиц и атомного ядра. 1995. Т. 26. Вып. 6. С. 1449.
  19. Ditroi F., Hermanne A., Corniani E., Takacs S., Tárkányi F., Csikai J., Shubin Y.N. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. № 19. P. 3364.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (96KB)
3.

Download (76KB)
4.

Download (82KB)
5.

Download (94KB)

Copyright (c) 2023 А.Р. Мороз, Н.А. Коваленко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies