Reflection of Light Ions from a Solid Surface: Analytical Model and Computer Simulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An analytical solution of the equation for the distribution of the flux density of reflected light ions over the path length and energy losses in the target is obtained. It is based on the solution of boundary problems for the transport equation using the invariant imbedding method in the small-angle approximation. In the case of proton reflection from copper and tungsten targets, the analytical results are compared with computer simulation data obtained using the OKSANA program, as well as with experimental data. The possibility of verifying the stopping power of the target material based on the created methodology is noted.

About the authors

V. P. Afanas’ev

National Research University “MPEI”

Author for correspondence.
Email: v.af@mail.ru
Russia, 111250, Moscow

L. G. Lobanova

National Research University “MPEI”

Author for correspondence.
Email: lida.lobanova.2017@mail.ru
Russia, 111250, Moscow

V. I. Shulga

Moscow State University, Skobeltsyn Institute of Nuclear Physics

Author for correspondence.
Email: vish008@yandex.ru
Russia, 119991, Moscow

References

  1. Машкова Е.С., Молчанов В.А. Рассеяние ионов средних энергий поверхностями твердых тел. М.: Атомиздат, 1980. 256 с.
  2. Курнаев В.А., Машкова Е.С., Молчанов В.А. Отражение легких ионов от поверхности твердого тела. М.: Энергоатомиздат, 1985. 192 с.
  3. Mashkova E.S., Molchanov V.A. Medium Energy Ion Reflection from Solids. Amsterdam: North-Holland, 1985. 444 p.
  4. Рязанов М.И., Тилинин И.С. Исследование поверхности по обратному рассеянию частиц. М.: Энергоатомиздат, 1985. 150 с.
  5. Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids. N.Y.: Pergamon, 1985. 321 p.
  6. Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995. 319 с.
  7. Булгадарян Д.Г. Рассеяние протонов кэвных энергий как инструмент анализа тонких слоев на поверхности материалов: Дис. … канд. физ.-мат. наук: 01.04.08. Москва: МИФИ, 2020. 116 с.
  8. Tougaard S., Kraaer J. // Phys. Rev. B. 1991. V. 43. № 2. P. 1651. https://doi.org./10.1103/PhysRevB.43.1651
  9. Afanas’ev V.P., Lubenchenko A.V., Gubkin M.K. // Eur. Phys. J. B. 2004. V. 37. № 1. P. 117. https://doi.org/10.1140/epjb/e2004-0036-x
  10. Werner W.S.M. // Surf. Sci. 2005. V. 588. № 1–3. P. 26. https://doi.org./10.1016/j.susc.2005.05.023
  11. Werner W.S.M. // Surf. Sci. 2007. V. 601. № 10. P. 2125. https://doi.org/10.1016/j.susc.2007.03.001
  12. Oswald R., Kasper E., Gaukler K.H. // J. Electron. Spectrosc. Relat. Phenom. 1993. V. 61. № 3–4. P. 251. https://doi.org/10.1016/0368-2048(93)80019-i
  13. Salvat-Pujol F., Werner W.S.M. // Phys. Rev. B. 2011. V. 83. № 19. P. 195416. https://doi.org./10.1103/PhysRevB. 83.195416
  14. Bronshtein I.M., Pronin V.P. // Sov. Phys. Solid State. 1975. V. 17. № 8. P. 2502.
  15. Pronin V.P. Elastic and Inelastic Interaction of Medium Energy Electrons with Surface of Solids. Thesis for the Degree of Doctor of Science. Saint-Petersburg: Herzen State Pedagogical University, 2014.
  16. Powell C.J., Jablonski A. // J. Electron. Spectrosc. Relat. Phenom. 2010. V. 178–179. № 3–4. P. 331. https://doi.org/10.1016/j.elspec.2009.05.004
  17. Афанасьев В.П. // Элементарные процессы и кинетика высокотемпературной неравновесной плазмы. М.: Изд-во МЭИ, 1988. С. 82.
  18. Afanas’ev V.P., Naujoks D. // Phys. Stat. Sol. 1991. V. 164. № 1. P. 133. https://doi.org/10.1002/pssb.2221640113
  19. Afanas’ev V.P., Efremenko D.S., Kaplya P.S. // J. Electron. Spectrosc. Relat. Phenom. 2016. V. 210. P. 16. https://doi.org/10.1016/j.elspec.2016.04.006
  20. Salvat-Pujol F., Jablonski A., Powell C.J. // Comput. Phys. Commun. 2005. V. 165. № 2. P. 157. https://doi.org/10.1016/j.cpc.2004.09.006
  21. Werner W.S.M. // Surf. Interface Anal. 2005. V. 37. № 11. P. 846. https://doi.org/10.1002/sia.2103
  22. Afanas’ev V.P., Kaplya P.S. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2015. V. 9. № 4. P. 715. https://doi.org/10.1134/s1027451015020238
  23. Afanas’ev V.P., Naujoks D. // Z. Phys. B. 1991. V. 84. № 3. P. 397. https://doi.org./10.1007/bf01314014
  24. Zemek J., Jiricek P., Werner W.S.M., Lesiak B., Jablonski A. // Surf. Interface Anal. 2006. V. 38. № 4. P. 615. https://doi.org./10.1002/sia.2147
  25. Jablonski A., Hansen H.S., Jansson C., Tougaard S. // Phys. Rev. B. 1992. V. 45. № 7. P. 3694.https://doi.org/10.1103/PhysRevB.45.3694
  26. Tougaard S., Chorkendorff I. // Phys. Rev. B. 1987. V. 35. № 13. P. 6570. https://doi.org/10.1103/physrevb.35.6570
  27. Dashen R.F. // Phys. Rev. B. 1964. V. 134. № 4A. P. A1025. https://doi.org/10.1103/PhysRev.134.A1025
  28. Ambartsumian V.A. // J. Phys. 1941. V. 5. № 1. P. 93.
  29. Ambartsumian V.A. // Izv. AN SSSR. 1942. V. 3. P. 97.
  30. Ambartsumian V.A. // J. Phys. 1944. V. 8. № 2. P. 65.
  31. Sobolev V.V. Light Scattering in Planetary Atmospheres. N.Y.: Pergamon Press, 1975. 256 p.
  32. Thomson J.J. // Phil. Mag. 1912. V. 23. № 136. P. 449.
  33. Bethe H. // Z. Phys. B. 1930. V. 397. № 3. P. 325. https://doi.org/10.1002/andp.19303970303
  34. Shulga V.I., Schinner A., Sigmund P. // Nucl. Instrum. Methods Phys. Res. B. 2020. V. 467. P. 91. https://doi.org/10.1016/j.nimb.2020.01.029
  35. Robinson M.T., Torrens I.M. // Phys. Rev. B. 1974. V. 9. № 12. P. 5008. https://doi.org/10.1103/PhysRevB.9.5008
  36. Morita K., Akimune H., Suita T. // Jpn. J. Appl. Phys. 1968. V. 7. № 8. P. 916. https://doi.org/10.1143/JJAP.7.916
  37. Булгадарян Д.Г., Синельников Д.Н., Ефимов Н.Е., Курнаев В.А. // Изв. РАН. Сер. Физ. 2020. Т. 84. № 6. С. 903. https://doi.org./10.31857/S036767652006006X
  38. Firsov O.B. // JETP. 1959. V. 9. № 5. P. 1076.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (142KB)
3.

Download (147KB)
4.

Download (181KB)

Copyright (c) 2023 В.П. Афанасьев, Л.Г. Лобанова, В.И. Шульга

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies