Analysis of Structures at the Boundary of Contact Melting Al–Mg–Mn and Zn Based Alloys

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The processes of contact melting of the AMg6 (Al-6%Mg-1%Mn) alloy with Zn–Cu–Al solder and the model Zn–Al alloy, as well as the structure of the contact fusion zone, are studied. Samples were obtained in two stages. At the first step, the solder was mechanically applied (tinned) to the surface of the AMg6 plates. Аt the second step, the resulting composite samples were subjected to heat treatment with a varied exposure time in the liquid state. According to the data of metallographic and X-ray diffraction analyses, as well as differential scanning calorimetry, it was shown that already at the tinning stage the active interaction between Zn and Al occurs, which leads to the formation of a developed microstructure in the joint zone. The presence of copper in the solder HTS-2000 reduces the melting point of the Zn-Al alloy by 30-40°C and improves the conditions for contact interaction with the grade AMg6 matrix. Active diffusion of zinc ensures the formation of an extensive melting zone during heat treatment, while zinc-rich areas during crystallization contain the Zn5Cu intermetallic phase, which prevents the formation of intermetallic ZnxMgy compounds, which does not lead to embrittlement of the contact zone.

About the authors

E. А. Batalova

Udmurt Federal Research Center, UB RAS

Author for correspondence.
Email: elizaveta.smagina.97@mail.ru
Russian Federation, Izhevsk

L. V. Kamaeva

Udmurt Federal Research Center, UB RAS

Email: lara_kam@mail.ru
Russian Federation, Izhevsk

I. V. Shutov

Udmurt State University

Email: elizaveta.smagina.97@mail.ru
Russian Federation, Izhevsk

M. N. Korolev

Udmurt State University

Email: elizaveta.smagina.97@mail.ru
Russian Federation, Izhevsk

M. D. Krivilev

Udmurt Federal Research Center, UB RAS; Udmurt State University

Email: elizaveta.smagina.97@mail.ru
Russian Federation, Izhevsk; Izhevsk

References

  1. Алюминиевые сплавы. Состав, свойства, технология, применение. / Ред. Белецкий В.М. Киев: Коминтех, 2005. 365 с.
  2. Бродова И.Г., Попель П.С., Барбин Н.М., Ватолин Н.А. Исходные расплавы как основа формирования структуры и свойств алюминиевых расплавов. Екатеринбург: УрО РАН, 2005. 367 с.
  3. Kamaeva L.V., Lad’yanov V.I., Ryltsev R.E., Chtchelkatchev N.M. // J. Molecular Liquids. 2020. V. 299. P. 112207. https://doi.org/10.1016/j.molliq.2020.114636
  4. Баталова Е.А., Камаева Л.В. // Химическая физика и мезоскопия. 2021. Т. 23. № 3. С. 325. https://doi.org/10.15350/17270529.2021.3.29
  5. Камаева Л.В., Корепанов А.Ю., Ладьянов В.И. // Теплофизика высоких температур. 2018. Т. 56. № 4. С. 534. https://doi.org/10.1134/S0040364419020066
  6. Бельтюков А.Л., Стерхова И.В., Ладьянов В.И., Хуснутдинов Р.М., Мокшин А.В. // Журнал физической химии. 2022. Т. 96. № 12. С. 1724. https://doi.org/10.31857/S004445372212007X
  7. Бродова И.Г., Ширинкина И.Г., Распосиенко Д.Ю., Акопян Т.К. // Физика металлов и металловедение. 2020. Т. 121. № 9. С. 987. https://doi.org/10.31857/S001532302009003X
  8. Бродова И.Г., Кленов А.Н., Ширинкина И.Г., Смирнов Е.Б., Орлова Н.Ю. // Физика металлов и металловедение. 2021. Т. 122. № 12. С. 1309. https://doi.org/10.31857/S0015323021120032
  9. Шуркин П.К., Белов Н.А., Мусин А.Ф., Аксенов А.А. // Известия высших учебных заведений. Цветная металлургия. 2020. № 1. С. 48. https://doi.org/10.17073/0021-3438-2020-1-48-58
  10. Справочник по пайке. / Ред. Лоцманов С.Н., Петрунин И.Е. и д.р. М.: Машиностроение, 1975.
  11. Измайлов В.В., Новоселова М.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. С. 64. https://doi.org/10.31857/S1028096022050119
  12. Карамурзов Б.С., Кутуев Р.А., Понежев М.Х., Созаев В.А., Шерметов А.Х., Шокаров А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 6. С. 109. https://doi.org/10.31857/S1028096021030055
  13. Sekulic D.P., Galenko P.K., Krivilyov M.D., Walker L., Gao F. // Int. J. Heat Mass Transf. 2005. № 12. P. 2372. https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.034
  14. Shutov I.V., Kamaeva L.V., Krivilyov M.D., Yu C.-N., Mesarovic S.Dj., Sekulic D.P. // J. Crystal Growth. 2020. V. 530. P. 125287. https://doi.org/10.1016/j.jcrysgro.2019.125287
  15. Bazhenov V.E., Pashkov I.N., Pikunov M.V., Cheverikin V.V. // Mater. Sci. Technol. 2016. V. 32. №8. P. 752. https://doi/org//10.1179/1743284715Y.0000000135
  16. Bazhenov V.E., Pikunov M.V., Pashkov I.N. // Russ. Metall. 2018. V. 2018. № 5. P. 445. https://doi.org/10.1134/S0036029518050026
  17. Shapiro L.A. // Welding Journal. 2009. V. 88. № 10. P. 43.
  18. Шутов И.В., Камаева Л.В., Баталова Е.А., Королев М.Н., Кривилев М.Д. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. C. 80. https://doi.org/10.31857/S1028096022080167
  19. Sterkhova I.V., Kamaeva L.V. // J. Non-Cryst. Solids. 2014. V. 401. P. 250. https://dx.doi.org/10.1016/j.jnoncrysol.2014.01.027
  20. Диаграммы состояния двойных металлических систем: Справочник: В 3 т.: Т. 1 / Ред. Лякишев Н.П. М.: Машиностроение, 1996. 992 с.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies