Structural features of poly(p-xylylene)−cadmium sulphide nanocomposite films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The structure and chemical composition of nanocomposite films based on poly(p-xylylene) with cadmium sulphide (CdS) as a filler were studied by X-ray diffraction and IR-spectroscopy. The films were synthesized by co-deposition of p-xylylene monomer and CdS vapors on quartz and silicon substrates, had a thickness of ~0.2 and ~1.5 µm and contained 5–90 vol. % of CdS. The effect of filler content and film thickness on polymer matrix and filler structure was demonstrated. Differences in the chemical compositions of films with thicknesses of ~0.2 and ~1.5 µm were revealed, caused by their partial oxidation upon contact with air after synthesis. The possible influence of hydroxyl groups on the formation of CdS crystalline structures in films was discussed. A correlation was established between structural transformations upon changes in the CdS content with the previously obtained dependences of dark conductivity and photoconductivity for films with a thickness of ~0.2 μm.

Full Text

Restricted Access

About the authors

O. P. Ivanova

Emanuel Institute of Biochemical Physics RAS

Author for correspondence.
Email: olga@deom.chph.ras.ru
Russian Federation, 119334, Moscow

A. V. Krivandin

Emanuel Institute of Biochemical Physics RAS

Email: olga@deom.chph.ras.ru
Russian Federation, 119334, Moscow

A. A. Piryazev

Institute of Problems of Chemical Physics RAS

Email: olga@deom.chph.ras.ru
Russian Federation, 142334, Chernogolovka

S. A. Zav’yalov

National Research Center Kurchatov Institute

Email: olga@deom.chph.ras.ru
Russian Federation, 123182, Moscow

References

  1. Трахтенберг Л.И., Герасимов Г.Н., Григорьев Е.И. // Журн. физ. химии. 1999. Т. 73. № 2. C. 264.
  2. Григорьев Е.И., Завьялов С.А., Чвалун С.Н. // Российские нанотехнологии. 2006. Т. 1. № 1–2. С. 58.
  3. Гусев А.В., Маилян К.А., Пебалк А.В., Рыжиков И.А., Чвалун С.Н. // Радиотехника и электроника. 2009. Т. 54. № 7. C. 875.
  4. Синтез, строение и свойства металл/полупроводник содержащих наноструктурированных композитов // Ред. Трахтенберг Л.И., Мельников М.Я. М.: Техносфера, 2016. С. 175.
  5. Wang Y., Herron N. // Phys. Rev. B. 1990. V. 42. № 11. P. 7253.
  6. Wang Y., Herron N. // J. Phys. Chem. 1991. V. 95. P. 525.
  7. Ремпель А.А. // Изв. Акад. наук. Сер. хим. 2013. Т. 4. С. 857.
  8. Ворох А.С., Ремпель А.А. // ДАН. 2007. Т. 413. № 6. C. 743.
  9. Ворох А.С., Кожевникова Н.С., Ремпель А.А. // Изв. РАН. Сер. физ. 2008. Т. 72. № 10. С. 1472.
  10. Кожевникова Н.С., Ворох А.С., Урицкая А.А. // Успехи химии. 2015. Т. 84. № 3. C. 225.
  11. Junkermeier C.E., Lewis J.P., Bryant G.W. // Phys. Rev. B. 2009. V. 79. № 12. P. 125323.
  12. Иванова О.П., Криничная Е.П., Завьялов С.А., Журавлева Т.С. // Российские нанотехнологии. 2017. Т. 12. № 11–12. С. 46.
  13. Иванова О.П., Кривандин А.В., Криничная Е.П., Пирязев А.А., Завьялов С.А., Журавлева Т.С. // Российские нанотехнологии 2020. Т. 15. № 6. С. 787.
  14. Иванова О.П., Кривандин А.В., Завьялов С.А., Журавлева Т.С. // Изв. Акад. наук. Сер. хим. 2021. № 9. С. 1699.
  15. Иванова О.П., Криничная Е.П., Морозов П.В., Завьялов С.А., Журавлева Т.С. // Российские нанотехнологии. 2019. Т. 14. № 1–2. С. 10.
  16. Завьялов С.А., Григорьев Е.И., Пивкина А.Н. // Журн. физической химии. 2006. Т. 80. № 3. С. 560.
  17. Завьялов С.А., Схоунман Й., Пивкина А.Н., Гайнутдинов Р.В. // Химическая физика. 2007. Т. 26. № 4. С. 81.
  18. Мисуркин И.А., Титов С.В., Журавлева Т.С. и др. // Журн. физ. химии. 2009. Т. 83. № 3. С. 534.
  19. Журавлева Т.С., Иванова О.П., Криничная Е.П. и др. // Хим. физика. 2011. Т. 30. № 8. C. 75.
  20. Krivandin A.V., Solov’eva A.B., Glagolev N.N., Shatalova O.V., Kotova S.L. // Polymer. 2003. V. 44. P. 5789.
  21. Holder C.F., Schaak R.E. // ACS Nano. 2019. V. 13. P. 7359.
  22. Gazicki M., Surendran G., James W., Yasuda H. // J. Polym. Sci. A. 1986. V. 24. P. 215.
  23. Streltsov D.R., Mailyan K.A., Gusev A.V. et al. // Appl. Phys. A. 2013. V. 110. P. 413.
  24. Streltsov D.R., Mailyan K.A., Gusev A.V et al. // Polymer. 2015. V. 71. P. 60.
  25. Князева А.А., Озерин С.А., Григорьев Е.И., Чвалун С.Н., Завьялов С.А., Кардаш И.Е. // Высокомолек. соединения. Сер. Б. 2005. Т. 47. № 7. C. 1225.
  26. Kuznetsova Yu.V., Rempel A.A., Meyer M., Pipich V., Gerth S., Magerl A. // J. Cryst. Growth. 2016. V. 447. P. 13.
  27. Penn R.L., Banfield J.F. // Science. 1998. V. 281. № 5379. P. 969.
  28. Lee E.J.H., Ribeiro C., Longo E., Leite E. R. // J. Phys. Chem. B. 2005. V. 109. № 44. P. 20842.
  29. Zhang. J., Huang F., Lin Z. // Nanoscale. 2010. V. 2. № 1. P. 18.
  30. Чмутин И.А., Летягин С.В., Шевченко В.Г., Пономаренко А.Т. // Высокомолек. соединения. 1994. Т. 36. № 4. С. 699.
  31. Кожевникова Н.С., Демин А.М., Краснов В.П., Ремпель А.А. // ДАН. 2013. Т. 452. № 1. С. 47.
  32. Ремпель А.А., Валеева А.А. // Изв. Акад. наук. Сер. хим. 2019. № 12. С. 2163.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction patterns of CdS films: with a wurtzite-type structure (1); X-ray amorphous (2); with a SPU structure (3). Experimental intensity 2 is increased threefold. Diffraction patterns 1, 2 are shifted upward along the ordinate axis.

Download (84KB)
3. Fig. 2. Diffraction patterns of PPX films: amorphous-crystalline (1); X-ray amorphous (2). Diffraction pattern 1 is shifted upward along the ordinate axis.

Download (75KB)
4. Fig. 3. Diffraction patterns of PPX–CdS nanocomposite films with a thickness of ~1.5 μm, obtained on a synchrotron diffractometer (left) and on a laboratory diffractometer with a coordinate detector (right), CdS filler content: a – 5; b – 10; c – 20; g – 30; d – 40; f – 50; g – 60; h – 70; i – 80; j – 90 vol.%.

Download (434KB)
5. Fig. 4. Diffraction patterns of PPX–CdS nanocomposite films with a thickness of ~0.2 μm, obtained on a laboratory diffractometer with a coordinate detector (a–g) and a photo method using an X-ray camera with point collimation of the X-ray beam (d), CdS filler content: a – 8; b – 10.5; c – 11; d – 13.5; d – 10.5 vol.%.

Download (304KB)
6. Fig. 5. IR spectra of PPX–CdS nanocomposite films with a thickness of ~1.5 μm and a CdS filler concentration of: 1 − 0; 2 − 5; 3 − 10; 4 − 30; 5 − 50; 6 − 60; 7 – 70 vol.%.

Download (134KB)
7. Fig. 6. IR spectra of PPX–CdS nanocomposite films with a thickness of ~0.2 μm and a CdS filler concentration of: 1 − 0; 2 − 8; 3 − 10; 4 − 10.5%.

Download (137KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies