Formation of bismuth nanoparticles on nanoporous substrates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Substrates with a layer of anodized aluminum oxide are obtained by one-stage and two-stage anodization. The samples had different porosity in volume and on the surface. Bismuth nanoparticles were obtained by thermal evaporation in argon by condensation onto substrates with a layer of anodized aluminum oxide. The distribution of sizes, shapes, and numbers of nano- and microparticles was studied using images obtained with a scanning electron microscope. The largest number of nanoparticles (21%) on the sample with a surface layer of aluminum oxide without pores had a diameter of 70 nm. It was assumed that the presence of pores on the surface affected the migration of deposited atoms and particles of bismuth melt until stable condensation centers were formed. The presence of pores with a diameter of 20–100 nm led to a decrease in the diameter of the most common bismuth nanoparticles from 80 to 40 nm. Nanoparticles with a diameter of 90 nm were predominant (25%) in the sample with pores with a diameter of 60–220 nm. The largest number of spherical crystallites on all substrates had a diameter of 110 nm. It was established that a uniform distribution of particles was obtained on a sample, the surface of which was not subjected to chemical polishing.

About the authors

S. I. Supelnyak

FSRC “Crystallography and Photonics” RAS

Author for correspondence.
Email: supelnyak@gmail.com

Shubnikov Institute of Crystallography

Russian Federation, 119333, Moscow

V. V. Artemov

FSRC “Crystallography and Photonics” RAS

Email: supelnyak@gmail.com

Shubnikov Institute of Crystallography

Russian Federation, 119333, Moscow

References

  1. Brandt N.B., Dolgolenko T.F., Stupochenko N.N. // Sov. Phys. JETP. 1964. V. 18. № 4. P. 908.
  2. Sandomirskii V.B. // Sov. Phys. JETP. 1967. V. 25. № 1. P. 101.
  3. Saikawa K. //J. Phys. Soc. Jpn. 1970. V. 29. № 3. P. 570. https://www.doi.org/10.1143/JPSJ.29.562
  4. Эдельман В.С. // Успехи физических наук. 1977. Т. 123. № 10. С. 257. https://www.doi.org/10.3367/UFNr.0123.197710d.0257
  5. Toudert J., Serna R., Deeb C., Rebollar E. // Opt. Mater. Express. 2019. V. 9. № 7. P. 2924. https://www.doi.org/10.1364/OME.9.002924
  6. Romanov A.N., Haula E.V., Korchak V.N. // Quantum Electronics. 2020. V. 50. № 10. P. 910. https://www.doi.org/10.1070/QEL17250
  7. Liu S., Tian J., Zhang W. // Nanotechnology. 2021. V. 32. № 22. P. 222001. https://www.doi.org/10.1088/1361-6528/abe25f
  8. Kim J., Shim W., Lee W. // J. Mater. Chem. C. 2015. V. 3. № 46. P. 11999. https://www.doi.org/10.1039/x0xx00000x
  9. Goncharova A.S., Napolskii K.S., Skryabina O.V., Stolyarov V.S., Levin E.E., Egorov S.V., Eliseev A.A., Kasumov Yu.A., Ryazanov V.V., Tsirlinab G.A. // Phys. Chem. Chem. Phys. 2020. V. 22. № 26. P. 14953. https://www.doi.org/10.1039/D0CP01111H
  10. Lee P.C., Wei P.C., Chen Y.Y. // Nanomaterials. 2021. V. 11. № 3. P. 819. https://www.doi.org/10.3390/nano11030819
  11. Rehman A.Ur., Ashraf M.W., Tayyaba S., Bashir M., Wasim M.F., Imran M. // Dig. J. Nanomater. Biostructures. 2021. V. 16. № 1. P. 231.
  12. Kozhemyakin G.N., Artemov V.V., Kiiko A.V., Kiiko S.A., Bryl O.E. // Russ. Metallurgy (Metally). 2021. № 1. P. 68. https://www.doi.org/10.1134/S0036029521010079
  13. Кожемякин Г.Н., Ковалев С.Ю., Соклакова О.Н. // Физика и химия обработки материалов. 2019. № 5. С.68. https://www.doi.org/10.30791/0015-3214-2019-5-68-73
  14. Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: справочник / Ред. Григорьев И.С., Мелихов Е.З. М.: Энергоатомиздат, 1991. 1232 с.
  15. Кожемякин Г.Н., Брыль О.Е., Панич Е.А., Довгалюк А.И., Савицкий И.В., Ярмов А.А. // Кристаллография. 2019. Т. 64. № 2. С. 1. https://www.doi.org/10.1134/S0023476119020188
  16. Егоров В.М., Урюпин О.Н., Иванов Ю.В. // Физика твердого тела. 2015. Т. 57. Вып. 9. С. 1798.
  17. Kellermann G., Craievich A.F. // Phys. Rev. B. 2008. V. 78. № 5. P. 054106. https://www.doi.org/10.1103/PhysRevB.78.054106
  18. Li Y., Zang L., Jacobs D.L., Zhao J., Yue X., Wang C. // Nature Commun. 2017. V. 8. № 1. P. 1. https://www.doi.org/10.1038/ncomms14462
  19. Lee J., Kim Y., Jung U., Chung W. // Mater. Chem. Phys. 2013. V. 141. № 2–3. P. 680. https://www.doi.org/10.1016/j.matchemphys.2013.05.058
  20. Vera-Londono L., Ruiz-Clavijo A., Caballero-Calero O., Martín-González M. // Nanoscale Adv. 2020. V. 2. № 10. P. 4591. https://www.doi.org/10.1039/D0NA00578A

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characteristic REM images of bismuth particles on pillows: a - No. 1; b - No. 2 "Z"; c – No. 2 "O"; d – No. 3.

Download (1011KB)
3. Fig. 2. Characteristic REM images of the cleavage of substrates: a – No. 1; b – No. 2 “Z“; c – No. 2 ”O"; d – No. 3.

Download (732KB)
4. Fig. 3. Diagrams of the size distribution of bismuth particles for samples: a – No. 1 and No. 3; b – No. 2 “Z” and No. 2 “O".

Download (238KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies