Tungsten sputtering coefficients by light impurities of plasma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Calculations of the tungsten sputtering coefficients (the divertor material in the ITER tokamak) by He, Be, N, O – impurity atoms in the plasma – were carried out at collision energy of 0.010–100 keV using the Monte–Carlo method. To calculate the trajectory of the incident particle, pair potentials obtained within the framework of density functional theory were used. These potentials were corrected for the parameters of the potential well obtained from spectroscopic measurements. The target consisted of tungsten randomly oriented crystals the size of one lattice constant. Next, the trajectories of the recoil particles were calculated using many-particle potentials calculated using density functional theory. Thermal vibrations of target atoms were taken into account. The vibration amplitude was taken to be 0.05 Å, which corresponded to room temperature. The strong dependence of the results on the shape of the surface potential barrier is shown and the results are presented for two limiting cases of the surface state: a flat surface, when a planar surface potential barrier is realized, and a surface consisting of cones, when a spherical potential barrier occurs. In the experiment, the surface has some roughness, which depends on the experimental conditions. It is shown that the experimental results lie between the limiting cases we considered. Information was obtained on the average energy of sputtered atoms and angular distributions, necessary for calculating the entry of impurities into the tokamak plasma.

About the authors

V. S. Mikhailov

Ioffe Institute

Author for correspondence.
Email: chiro@bk.ru
Russian Federation, 194021, St Petersburg

P. Yu. Babenko

Ioffe Institute

Email: chiro@bk.ru
Russian Federation, 194021, St Petersburg

A. N. Zinoviev

Ioffe Institute

Email: chiro@bk.ru
Russian Federation, 194021, St Petersburg

References

  1. Бабенко П.Ю., Михайлов В.С., Зиновьев А.Н. // Письма в ЖТФ. 2023. Т. 49. № 8. С. 42. https://www.doi.org/10.21883/PJTF.2023.08.55138.19432
  2. Бабенко П.Ю., Михайлов В.С., Шергин А.П., Зиновь- ев А.Н. // ЖТФ. 2023. Т. 93. № 5. С. 709. https://www.doi.org/10.21883/JTF.2023.05.55467.12-23
  3. Михайлов В.С., Бабенко П.Ю., Шергин А.П., Зиновьев А.Н. // ЖЭТФ. 2023. Т. 163 (принята в печать).
  4. Babenko P.Yu., Mironov M.I., Mikhailov V.S., Zino-viev A.N. // Plasma Phys. Control. Fusion. 2020. V. 62. № 4. P. 045020. https://www.doi.org/10.1088/1361-6587/ab7943
  5. Afanasyev V.I., Mironov M.I., Nesenevich V.G., Pet- rov M.P., Petrov S.Y. // Plasma Phys. Control. Fusion. 2013. V. 55. № 4. P. 045008. https://www.doi.org/10.1088/0741-3335/55/4/045008
  6. Бабенко П.Ю., Зиновьев А.Н., Михайлов В.С., Тенсин Д.С., Шергин А.П. // Письма в ЖТФ. 2022. Т. 48. № 14. С. 10. https://www.doi.org/10.21883/PJTF.2022.14.52862.19231
  7. Meluzova D.S., Babenko P.Yu., Shergin A.P., Nord-lund K., Zinoviev A.N. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 460. P. 4. https://www.doi.org/10.1016/j.nimb.2019.03.0378
  8. Бабенко П.Ю., Зиновьев А.Н., Тенсин Д.С. // ЖТФ. 2022. Т. 92. № 11. С. 1643. https://www.doi.org/10.21883/JTF.2022.11.53436.151-22
  9. Zinoviev A.N., Babenko P.Yu., Nordlund K. // Nucl. Instrum. Methods Phys. Res. B. 2021. V. 508. P. 10. https://www.doi.org/10.1016/j.nimb.2021.10.001
  10. Zinoviev A.N., Nordlund K. // Nucl. Instrum. Methods Phys. Res. B. 2017. V. 406. P. 511. https://www.doi.org/10.1016/J.NIMB.2017.03.047
  11. Primetzhofer D., Rund S., Roth D., Goebl D., Bauer P. // Phys. Rev. Lett. 2011. V. 107. № 16. P. 163201. https://www.doi.org/10.1103/PhysRevLett.107.163201
  12. Mann A., Brandt W. // Phys. Rev. B. 1981. V. 24. № 9. P. 4999. https://www.doi.org/10.1103/PhysRevB.24.4999
  13. Granberg F., Byggmästar J., Nordlund K. // J. Nucl. Mater. 2021. V. 556. P. 153158. https://www.doi.org/10.1016/j.jnucmat.2021.153158
  14. Bjorkas C., Nordlund K. // J. Nucl. Mater. 2013. V. 439. P. 174. https://www.doi.org/10.1016/j.jnucmat.2013.04.036
  15. Lyashenko A., Safi E., Polvi J., Djurabekova F., Nordlund K. // J. Nucl. Mater. 2020. V. 542. P. 152465. https://www.doi.org/10.1016/j.jnucmat.2020.152465
  16. Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995. 321 с.
  17. Falcone G., Gullo F. // Phys. Lett. A. 1987. V. 125. № 8. P. 432. https://www.doi.org/10.1016/0375-9601(87)90178-2
  18. Behrisch R., Eckstein W. Sputtering by Particle Bom-bardment. Berlin: Springer, 2007. 509 p.
  19. Мелузова Д.С., Бабенко П.Ю., Зиновьев А.Н., Шергин А.П. // Письма в ЖТФ. 2020. Т. 46. № 24. С. 19. https://www.doi.org/10.21883/PJTF.2020.24.50422.18487
  20. Yang X., Hassanein A. // Appl. Surf. Sci. 2014. V. 293. P. 187. https://www.doi.org/10.1016/j.apsusc.2013.12.129
  21. Yamamura Y., Tawara H. // Atom. Data Nucl. Data Tabl. 1996. V. 62. P. 149. https://www.doi.org/10.1006/ADND.1996.0005
  22. Brezinsek S. // J. Nucl. Mater. 2015. V. 463. P. 11. https://www.doi.org/10.1016/j.jnucmat.2014.12.007

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the sputtering coefficient of tungsten by atoms Ne (a), Ve (b), N (c) and O (d) on the energy of the incident particle. The graphs show the results of calculations: using a spherical potential barrier (1); a planar potential barrier (2); from work [17] (3); from work [18] (4); from works [19] (5) and [20] (6) performed using methods molecular dynamics; from [21] (7); using the SDTrimSP program from [22] (8). The experimental data given in [18] are shown by dots.

Download (462KB)
3. Fig. 2. Dependence of the average energy of the atomized tungsten atom on the initial energy of the bombarding particle when irradiated with atoms Ne (1), Be (2) and N (3) in the case of a spherical (a) and planar surface barrier (b).

Download (297KB)
4. Fig. 3. The normalized angular distribution of sprayed particles He (a) and N (b) with different energies (shown in the graph in eV) in the case of a spherical surface potential barrier.

Download (324KB)
5. Fig. 4. Normalized angular distribution of sprayed particles He (a) and N (b) with different energies (shown in the graph in eV) in the case of a planar potential surface barrier.

Download (425KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies