Complex Modification of the Surface Layer of a High-Entropy Al-Cr-Fe-Co-Ni Alloy by Electron-Ion-Plasma Treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the technology of wire-arc additive manufacturing (WAAM – wire arc additive manufacture), a high-entropy alloy (HEA) of non-equiatomic composition Al, Cr, Fe, Co, Ni was manufactured. Using the methods of modern physical materials science, an analysis of the elemental and phase composition, defective substructure, mechanical and tribological properties of the HEA surface layer, formed as a result of complex modification, combining the deposition of a film (B + Cr) and irradiation with a pulsed electron beam in an argon medium, was carried out. In the initial state, the alloy has a simple cubic lattice with a lattice parameter of 0.28795 nm; the average grain size of the HEA is 12.3 µm. Chemical elements (at. %) 33.4 Al; 8.3 Cr, 17.1 Fe, 5.4 Co, 35.7 Ni, which form HEA, are distributed quasi-periodically. The irradiation regime was revealed (energy density of the electron beam ES = 20 J/cm2, pulse duration 200 µs, number of pulses 3 pulses, frequency 0.3 s more than 5 times), allowing to increase microhardness (almost 2 times) and wear resistance (more than 5 times), reduce the coefficient of friction by 1.3 times. Regardless of the value of ES, HEA is a single-phase material and has a simple cubic crystal lattice. High-speed crystallization of the surface layer leads to the formation of a subgrain structure (150–200) nm. It is shown that an increase in the strength and tribological properties of HEA is due to a significant (4.5 times) decrease in the average grain size, the formation of particles of chromium and aluminum oxyborides, and the incorporation of boron atoms into the crystal lattice of HEA.

About the authors

Yu. F. Ivanov

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: yufi55@mail.ru
Russian Federation, Tomsk

M. O. Efimov

Siberian State Industrial University

Email: yufi55@mail.ru
Russian Federation, Novokuznetsk

A. D. Teresov

Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences

Email: yufi55@mail.ru
Russian Federation, Tomsk

V. E. Gromov

Siberian State Industrial University

Email: gromov@physics.sibsiu.ru
Russian Federation, Novokuznetsk

Yu. A. Shliarova

Siberian State Industrial University

Email: yufi55@mail.ru
Russian Federation, Novokuznetsk

I. A. Panchenko

Siberian State Industrial University

Email: yufi55@mail.ru
Russian Federation, Novokuznetsk

References

  1. George E.P., Curtin W.A., Tasan C.C. // Acta Materialia. 2020. V. 188. P. 435. https://doi.org/10.1016/j.actamat.2019.12.015
  2. Осинцев К.А., Громов В.Е., Коновалов С.В., Иванов Ю.Ф., Панченко И.А. // Изв. вузов. Черная металлургия. 2021. Т. 64. № 4. С. 249. https://doi.org/10.17073/0368-0797-2021-4-249-258
  3. Рогачев А.С. // Физика металлов и металловедение. 2020. Т. 121, № 8. P. 807. https://doi.org/10.31857/S0015323020080094
  4. Gromov V.Е., Konovalov S.V., Ivanov Yu.F., Osintsev K.A. Structure and properties of high-entropy alloys. Springer. Advanced structured materials, 2021. V. 107. 110 p.
  5. Yeh J.W., Chen S.K., Lin S.J., Gan J.Y., Chin T.S., Shun T.T., Tsau C.H., Chang S.Y. // Advanced Engineering Materials. 2004. V. 6. № 5. P. 299. https://doi.org/10.1002/adem.200300567
  6. Miracle D.B., Senkov O.N. // Acta Mater. 2017. V. 122. P. 448. https://doi.org/10.1016/j.actamat.2016.08.081
  7. Zhang W., Liaw P.K., Zhang Y. // Sci China Mater. 2018. V. 61. № 1. P. 2. https://doi.org/10.1007/s40843-017-9195-8
  8. Tsai M.-H., Yeh J.-W. // Mater. Res. Lett. 2014. V. 2:3. № 3. P. 107. https://doi.org/10.1080/21663831.2014.912690
  9. Alaneme K.K., Bodunrin M.O., Oke S.R. // J. Mater. Res. Technol. 2016. V. 5. № 4. P. 384. https://doi.org/10.1016/j.jmrt.2016.03.004
  10. Liu K., Nene S.S., Frank M., Sinha S., Mishra R.S. // Appl. Mater. Today. 2019. V. 15. P. 525. https://doi.org/10.1016/j.apmt.2019.04.001
  11. Yeh J.W. // Annalesde Chimie. Science des Materiaux. 2006. V. 31, № 6. P. 63. https://doi.org/10.3166/acsm.31.633-648
  12. Yeh J.W. // JOM. 2013. V. 65. № 12. P. 1759. https://doi.org/10.1007/s11837-013-0761-6
  13. Zhang L.S., Ma G.-L., Fu L.-C., Tian J.-Y. // Advanced Materials Research. 2013. V. 631–632. P. 227. https://doi.org/10.4028/www.scientific.net/AMR.631-632.227
  14. Zhang Y., Zuo T.T., Tang Z., Gao M.C., Dahmen K.A., Liaw P.K., Lu Z.P. // Progress in Mater. Sci. 2014. V. 61. P. 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001
  15. Gali A., George E.P. // Intermetallics. 2013. V. 39. P. 74. https://doi.org/10.1016/j.intermet.2013.03.018
  16. Murty B.S., Yeh J.W., Ranganathan S., Bhattacharjee P.P. High-Entropy Alloys. Second edition. Amsterdam: Elsevier, 2019. 374 p.
  17. Zhang Y. High-Entropy Materials. A brief introduction. Singapore: Springer Nature, 2019. 159 p.
  18. Ivanov Yu.F., Gromov V.Е., Zagulyaev D.V., Konovalov S.V., Rubannikova Yu.A., Semin A.P. // Progress in Physics of Metals. 2020. V. 21. № 3. P. 345. https://doi.org/10.15407/ufm.21.03.345
  19. Gromov V.E., Ivanov Yu.F., Vorobiev S.V., Konovalov S.V. Fatigue of steels modified by high intensity electron beams. Cambridge International Science Publishing Ltd, 2015. 272 p.
  20. Громов В.Е., Иванов Ю.Ф., Шлярова Ю.А., Коновалов С.В., Воробьев С.В., Кириллова А.В. // Проблемы черной металлургии и материаловедения. 2022. № 1. С. 65. https://doi.org/10.54826/19979258_2022_1_65
  21. Погребняк А.Д., Багдасарян А.А., Якущенко И.В., Береснев В.М. // Успехи химии. 2014. Т. 83. № 11. С. 1027. https://doi.org/10.1070/RCR4407
  22. Guo J., Goh M., Zhu Z., Lee X., Nai M.L.S., Wei J. // Materials and Design. 2018. V. 153. P. 211. https://doi.org/10.1016/j.matdes.2018.05.012
  23. Lindner T., Löbel M., Sattler B., Lampke T. // Surface and Coatings Technology. 2019. V. 371. P. 389. https://doi.org/10.1016/j.surfcoat.2018.10.017

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electron microscopic image of the VES structure (a); (b)-(f) - images of the sample section (a) obtained in characteristic X-ray emission of Cr (b), Fe (c), Ni (d), Al (e), Co (f) atoms

Download (922KB)
3. Fig. 2. Results of the micro-X-ray spectral analysis of a section of the HES sample (a), performed by the method "along the line"; (b)-(f) - distribution along the line indicated in Fig. 2a of the intensities of characteristic X-ray radiation of atoms Co (b), Al (c), Cr (d), Ni (e), Fe (f)

Download (967KB)
4. Fig. 3. X-ray fragment of high-entropy alloys before irradiation

Download (273KB)
5. Fig. 4. Dependence of microhardness (a), wear parameter (b), friction coefficient (c) and crystal lattice parameter (d) of the surface layer of the film/substrate system on the electron beam energy density. The microhardness of high-entropy alloys in the initial state is 4.7 GPa. The wear parameter of the film/substrate system before irradiation is 14 × 10-5 mm3/N∙m, the friction coefficient is 0.65

Download (391KB)
6. Fig. 5. Structure of the system "film/substrate" irradiated by a pulsed electron beam at an electron beam energy density of 20 J/cm2

Download (468KB)
7. Fig. 6. Electron microscopic image of the structure of the film/substrate system irradiated by a pulsed electron beam at an electron beam energy density of 20 J/cm2 (a); (b)-(d) - images of the sample section (a) obtained in characteristic X-ray emission of Cr (b), B (c), O (d) atoms

Download (725KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies