Effect of surface roughness on the strength of sapphire fiber

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, sapphire fibers formed using the modified Stepanov/EFG method were tested for strength. A study of the surface of sapphire fibers obtained from the melt shows that the roughness of the fibers arises mainly due to its fluctuation in ascending gas flows during the growth process. The paper investigates the effect of fiber surface roughness on its strength. To reduce the roughness, the fiber diameter stabilization system was used, which enable to reduce the roughness parameters to tens of nanometers. When testing according to the original method, it was found that a decrease in the surface roughness of the fiber leads to an increase in its strength. And the strength of the fibers decreases with length in a power law.

About the authors

D. O. Stryukov

Institute of Solid State Physics RAS

Author for correspondence.
Email: stryukov@issp.ac.ru
Russian Federation, 142432, Chernogolovka

V. M. Kiiko

Institute of Solid State Physics RAS

Email: stryukov@issp.ac.ru
Russian Federation, 142432, Chernogolovka

V. N. Kurlov

Institute of Solid State Physics RAS

Email: stryukov@issp.ac.ru
Russian Federation, 142432, Chernogolovka

References

  1. Handbook of Ceramic Composites / Ed. Bansal N.P. Kluwer Academic Publishers, 2005.
  2. Metallic Matrix Composites / Ed. Kreider K.G. Academic Press, 1974.
  3. Tewari S.N., Asthana R., Noebe R.D. // Metallurgical Transactions A. 1993. V. 24. P. 2119. https://doi.org/10.1007/BF02666345
  4. Chalmers B., LaBelle H.E., Mlavsky A.I. // J.Crystal Growth. 1972. V 13/14. P. 84. https://doi.org/10.1016/0022-0248(72)90067-X
  5. LaBelle H.E. // J. Crystal Growth. 1980. V. 50. P. 8. https://doi.org/10.1016/0022-0248(80)90226-2
  6. Kurlov V.N., Rossolenko S.N., Abrosimov N.V., Leb-bou Kh. Shaped Crystal Growth in Crystal Growth Processes Based on Capillarity Czochralski, Floating Zone, Shaping and Crucible Techniques / Ed. Duffar Th. John Wiley & Sons, 2010. P. 277. https://doi.org/10.1002/9781444320237.ch5
  7. Степанов А.В. Будущее металлообработки. Ленинград: Лениздат, 1963. 131 с.
  8. Rudolph P., Fukuda T. // Cryst. Res. Technol. 1999. V. 34. P. 3. https://doi.org/10.1002/(SICI)1521-4079(199901) 34:1<3::AID-CRAT3>3.0.CO;2-X
  9. Fiber Crystal Growth from the Melt / Eds. Fukuda T., Rudolph P., Uda. S. Springer-Verlag, 2004. https://doi.org/10.1007/978-3-662-07214-1
  10. Feigelson R.S. // J. Crystal Growth. 1986. V. 79. P. 669. https://doi.org/10.1016/0022-0248(86)90535-X
  11. Merberg G.N., Harrington J.A. // Appl. Optics. 1993. V. 32. P. 3201. https://doi.org/10.1364/AO.32.003201
  12. Mileiko S.T., Kazmin V.I. // J. Mater. Sci. 1992. V. 27. P. 2165. https://doi.org/10.1007/BF01117932
  13. Kurlov V.N., Kiiko V.M., Kolchin A.A., Mileiko S.T. // J. Crystal Growth. 1999. V. 204. P. 499. https://doi.org/10.1016/S0022-0248(99)00213-4
  14. Kurlov V.N., Stryukov D.O., Shikunova I.A. Growth of sapphire and oxide eutectic fibers by the EFG techni-que. // J. Physics: Conf. Series. 2016. V. 673. P. 0120175. https://doi.org/10.1088/1742-6596/673/1/012017
  15. Магунов А.Н. Лазерная термометрия твердых тел / А. Н. Магунов. – М.: Физматлит, 2001. 224 с.
  16. Katyba G.M., Zaytsev K.I., Dolganova I.N., Chernomyrdin N.V., Ulitko.V.E., Rossolenko S.N., Shikunova I.A., Kurlov V.N. // Prog. Crystal Growth Characterization Mater. 2021. V. 61. P. 100523. https://doi.org/10.1016/j.pcrysgrow.2021.100523
  17. Kiiko V.M., Mileiko S.T. // Composites Sci. Technol. 1999. V. 59. № 13. Р. 1977. https://doi.org/10.1016/S0266-3538(99)00054-8
  18. Single Crystal Sapphire Optical Fiber (2023) Photran LLC. https://www.photran.com
  19. Crystal fiber pioneers (2023) MicroMaterials Inc., Tampa, FL, U.S.A.
  20. http://www.micromaterialsinc.com/
  21. High Power Laser Gain Module Taranis for Short Pulses Lasers (2023) Fibercryst, France. https://www.fibercryst.com/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The scheme of growing sapphire fiber by the Stepanov/EFG method: 1– crystal; 2 – seed; 3 – melt; 4 – shaper.

Download (160KB)
3. Fig. 2. Growing fibers in a group way: a – with a circular arrangement of capillary channels of the shaper: 1 – seed crystal, 2 – fibers; b – with a linear arrangement of channels.

Download (339KB)
4. Fig. 3. Sapphire fibers with a diameter of 200 microns grown at a pulling rate of 300 (a) and 125 mm/h (b).

Download (344KB)
5. Fig. 4. Sapphire fiber grown without using a diameter stabilization system.

Download (287KB)
6. Fig. 5. The principle of operation of the fiber diameter stabilization system (a) and the fiber grown using this system (b).

Download (379KB)
7. Fig. 6. Surface roughness of sapphire fibers grown in the usual mode (a) and using a diameter stabilization system (b). Pt is the sum of the height of the largest protrusion and the depth of the largest depression of the surface relief.

Download (403KB)
8. Fig. 7. Test results of a batch of fibers: the dependence of the ultimate deformation during fracture and the strength of the fibers on the length and diameters of the cross section (indicated in the graph field) (a); fiber after testing (b), the arrows show fiber fractures.

Download (443KB)
9. Fig. 8. The dependence of the ultimate deformation and strength of fibers on the length of an ordinary fiber (●) and a fiber grown with a diameter stabilization device (o).

Download (118KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies