Non-drude-like behavior of the photoinduced dielectric permittivity of GaAs and Si in the gigahertz range frequencies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A non-drude-like behavior of the real part of the photoinduced permittivity ReåP of GaAs and Si samples in the gigahertz range was detected by direct resonator measurements under conditions of fiber-optic irradiation at a wavelength of ë = 0.97 microns with power changes P in the range of 0÷1 W. It is shown that, in accordance with the hypothesis of the exciton mechanism of the photoinduced microwave dielectric permittivity, ReåP increases with increasing P (approaching saturation above P = 200 mW) instead of decreasing within the framework of free charge carriers by Drude. The generality of the behavior of the real parts of the photoinduced permittivity observed in semiconductors of different types (straight-band GaAs and non-straight-band Si) in different electrodynamic systems (waveguides, resonators, metastructures) testifying to the universality of the exciton mechanism is demonstrated. Optically controlled metastructures in the GHz band containing resonant electrically conductive elements loaded with GaAs and Si samples are proposed for the first time: a metastructure based on linear dipoles and a half-wave electric dipole based on a multi-pass spiral. Gigahertz responses of metastructures and the transformation of responses associated with changes in the dielectric permittivity of Si and GaAs during photoexcitation were measured for the first time. Based on the hypothesis put forward about the effect of excitons on photoexcitation, the observed saturation effect of gigahertz photoinduced permittivity is discussed.

About the authors

V. S. Butylkin

Kotelnikov Institute of Radioengineering and Electronics RAS

Author for correspondence.
Email: vasebut@yandex.ru
Russian Federation, 141190, Fryazino

G. A. Kraftmakher

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: gaarkr139@mail.ru
Russian Federation, 141190, Fryazino

P. S. Fisher

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: fisherps@mail.ru
Russian Federation, 141190, Fryazino

References

  1. Chen H.T., O’Hara J.F., Azad A.K., Taylor A.J. // Laser Photonics Rev. 2011. V. 5. Iss. 4. P. 513. https://doi.org/10.1002/lpor.201000043
  2. Padilla W.J., Taylor A.J., Highstrete C., Lee M., Averitt R.D. // Phys. Rev. Lett. 2006. V. 96. P. 107401. https://doi.org/10.1103/PhysRevLett.96.107401
  3. Chen H.T., Padilla W.J., Zide J., Gossard A.C., Tay-lor A.J., Averitt R.D. // Nature. 2006. V. 444. P. 597. https://www.doi.org/10.1038/nature05343
  4. Xiao S., Wang T., Jiang X., Liu T., Zhou C., Zhang J. // J. Phys. D: Appl. Phys. 2020. V. 53. P. 503002. https://www.doi.org/10.1088/1361-6463/abaced
  5. Manceau J.M., Shen N.-H., Kafesaki M., Soukoulis C.M., Tzortzakis S. // Appl. Phys. Lett. 2010. V. 96. P. 021111. https://www.doi.org/10.1063/1.3292208
  6. Zhou J., Chowdhury D.R., Zhao R., Azad A.K., Chen H.-T., Soukoulis C.M., Taylor A.J., Hara J.F. // Phys. Rev. B. 2012. V. 86. № 3. P. 035448. https://doi.org/10.1103/PhysRevB.86.035448
  7. Nemati A., Wang Q., Hong M. H., Teng J. H. // Opto-Electron Advances. 2018. V. 1. № 18. P.180009. https://www.doi.org/10.29026/oea.2018.180009
  8. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н., Мальцев В.П., Фишер П.С. // Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 586. https://www.doi.org/10.31857/S1234567821210023
  9. Бутылкин В.С., Фишер П.С., Крафтмахер Г.А., Казанцев Ю.Н., Каленов Д.С., Мальцев В.П., Пархоменко М.П. // Радиотехника и электроника. 2022. Т. 67. № 12. С. 1185. https://www.doi.org/10.31857/S0033849422120038
  10. Маделунг О. Теория твердого тела. М.: Наука, 1980. 414 с.
  11. Rizza C., Ciattoni A., De Paulis F., Orlandi A., Palan-ge E., Colombo L. // J. Phys. D: Appl. Phys. 2015. V. 48. P. 135103. https://www.doi.org/10.1088/0022-3727/48/13/135103
  12. Рогалин В.Е., Каплунов И.А., Кропотов Г.И. // Оптика и спектроскопия. 2018. Т. 125. № 6. С. 851. https://www.doi.org/10.21883/OS.2018.12.46951.190-18
  13. Busch S., Scherger B., Scheller M., Koch M. //Optics Lett. 2012. V. 37. № 8. P. 1391. https://doi.org/10.1364/OL.37.001391
  14. Мусаев А.М. // Физика и техника полупроводников. 2017. Т. 51. № 10. С. 1341. https://www.doi.org/10.21883/FTP.2017.10.45010.8520
  15. Бутылкин В.С., Фишер П.С., Крафтмахер Г.А., Казанцев Ю.Н., Каленов Д.С., Мальцев В.П., Пархоменко М.П. // Радиотехника и Электроника. 2023. Т. 68. № 2. С. 152. https://www.doi.org/10.31857/S003384942302002X
  16. Агекян В.Ф. // Соросовский образовательный журн. 2000. Т. 6. № 10. С. 101.
  17. Днепровский В.С. // Соросовский образовательный журн. 2000. Т.6. № 8. С. 88.
  18. Кашкаров П.К., Тимошенко В.Ю. // Оптика твердого тела и систем пониженной размерности. М.: Физический факультет МГУ, 2009. С. 190.
  19. Нокс Р. Теория экситонов. М.: Мир, 1966.
  20. Лакс Б., Баттон К. Сверхвысокочастотные ферриты и ферримагнетики, М.: Мир, 1965. 675 с.
  21. Казанцев Ю.Н., Крафтмахер Г.А. // ФММ. 1989. Т. 67. № 5. С. 902.
  22. Kraftmakher G., Butylkin V., Kazantsev Y., Mal’tsev V. // Electron. Lett. 2017. V. 53. № 18. P. 1264. https://www.doi.org/10.1049/el.2017.1886
  23. Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. М.: Наука, 1977.
  24. Собельман И.И. Введение в теорию атомных спектров. М.: Физматгиз, 1963, С. 640.
  25. Файн В.М. Фотоны и нелинейные среды М.: Сов. Радио, 1972.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The dynamics of the dielectric constant Si (1) and GaAs (2) measured in a waveguide resonator (4.7 GHz) depending on the optical irradiation power P (at a wavelength of y = 0.97 µm) relative to P = 0: a – δReeP; b – ΔReeP; c – Δf; d – δImeP.

Download (500KB)
3. Fig. 2. M1 metastructure based on resonant copper wires in combination with an orthogonally and asymmetrically arranged copper strip 1 with a gap 2 loaded with Si: a – appearance; b – resonant response of the passage of a copper strip T, measured in a rectangular waveguide with M1 metastructure at P = 0 (1); 80 (2); 550 MW (3); 1 Watt (4).

Download (538KB)
4. Fig. 3. An electric half–wave dipole based on a multi–pass spiral of copper wires around a GaAs core: a - appearance; b - resonant response of passage T, measured in free space at P = 0 (1); 60 (2); 100 (3); 120 MW (4).

Download (282KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies