Study of the X-Ray Optical and Mechanical Characteristics of C/Si and B4C/Si Multilayer Mirrors

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The X-ray optical and mechanical properties of dielectric multilayer mirrors based on pairs of C/Si and B4C/Si materials are synthesized and studied. The mirrors are optimized for a wavelength of 13.5 nm. The parameters of the deposition process are found that simultaneously ensure the fulfillment of three conditions: relatively high reflection coefficients at the operating wavelength, near-zero mechanical stresses in the film, and the absence of electrical conductivity. At zero internal stresses, the reflection coefficient of C/Si multilayer mirrors deposited on superpolished silicon substrates at an operating wavelength of 13.5 nm is R = 11%, the spectral bandwidth is Δλ = 0.33 nm. The B4C/Si mirror provides the following characteristics: R = 8.2%, spectral bandwidth Δλ = 0.3 nm. However, blistering has been found in B4C/Si multilayer mirrors, i.e., the appearance of bubbles on the film due to the accumulation of hydrogen inside, which excludes their use for deposition on commercially available microelectromechanical system micromirrors. The deposition of a C/Si coating made it possible for the first time to obtain a workable system that reflects X-rays at an operating wavelength of 13.5 nm. The reflection coefficient is about R ~ 3%. The low value of the reflection coefficient is due to the high, about 1.5 nm, microroughness of the surface of the microelectromechanical system micromirrors. The study performed indicates the fundamental possibility of creating a matrix X-ray optical element for modulating the spatiotemporal characteristics of X-ray beams.

Sobre autores

R. Smertin

Institute of Physics of Microstructures RAS

Autor responsável pela correspondência
Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

M. Barysheva

Institute of Physics of Microstructures RAS

Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

S. Garakhin

Institute of Physics of Microstructures RAS

Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

M. Zorina

Institute of Physics of Microstructures RAS

Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

S. Zuev

Institute of Physics of Microstructures RAS

Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

V. Polkovnikov

Institute of Physics of Microstructures RAS

Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

N. Chkhalo

Institute of Physics of Microstructures RAS

Email: smertin_ruslan@ipmras.ru
Russia, 607680, Nizhny Novgorod

D. Radishchev

Institute of Applied Physics RAS

Email: smertin_ruslan@ipmras.ru
Russia, 603950, Nizhny Novgorod

Bibliografia

  1. http://elcompbase.ru/news/38/.
  2. Choksi N., Pickard D.S., McCord M., Pease R.F.W. // J. Vac. Sci. Technol. B. 1999. V. 17. P. 3047. https://doi.org./10.1116/1.590952
  3. Chkhalo N., Polkovnikov V., Salashchenko N., Toropov M. // J. Vac. Sci. Technol. B. 2017. V. 35. P. 062002. https://doi.org/10.1116/1.4995369
  4. Chkhalo N.I., Polkovnikov V.N., Salashchenko N.N., Toropov M.N. // Proc. SPIE. 2016. V. 10224. P. 102241O. https://doi.org/10.1117/12.2267125
  5. Chen Y., Shroff Y. // Proc. SPIE. 2006. V. 6151. P. 1512D. https://doi.org./10.1117/12.655113
  6. Nix W.D. // Metall. Trans. A. 1989. V. 20. № 11. P. 2217. https://doi.org./10.1007/BF02666659
  7. Гофман Р.У. Физика тонких пленок. Т. 3. М.: Мир, 1968.
  8. Андреев С.С., Клюенков Е.Б., Мизинов А.Л., Полковников В.Н., Салащенко Н.Н., Суслов Л.А., Чернов В.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2005. № 2. С. 45.
  9. https://static.chipdip.ru/lib/051/DOC013051769.pdf.
  10. Polkovnikov V.N., Salashchenko N.N., Svechnikov M.V., Chkhalo N.I. // Physics-Uspekhi. 2020. V. 63. Iss. 1. P. 83. https://doi.org./10.3367/UFNe.2019.05.038623
  11. Svechnikov M. // J. Appl. Crystallogr. 2020. V. 53. Iss. 1. P. 244. https://doi.org./10.1107/S160057671901584X
  12. Гарахин С.А., Забродин И.Г., Зуев С.Ю., Каськов И.А., Лопатин А.Я., Нечай А.Н., Полковников В.Н., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И. // Квантовая электроника. 2017. Т. 47. № 4. С. 385.
  13. Garakhin S.A., Chkhalo N.I., Kas’kov I.A., Lopatin A.Ya., Malyshev I.V., Nechay A.N., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Svechnikov M.V., Tsybin N.N., Zabrodin I.G., Zuev S.Yu. // Rev. Sci. Instrum. 2020. V. 91. Iss. 6. P. 063103. https://doi.org./10.1063/1.5144489
  14. Stoney G.G. // Proc. R. Soc. Lond. A. 1909. V. 82. P. 172. https://doi.org./10.1098/rspa.1909.0021
  15. Brenner A., Senderoff S. // J. Res. Nat’l. Bur. Stand. 1949. V. 42. P. 105.
  16. Добрынин А.В. // Письма в ЖТФ. 1997. Т. 23. № 18. С. 32.
  17. http://www.lao.cz/data/ke-stazeni/datasheet-newview-7300-d838.pdf
  18. Chkhalo N.I., Salashchenko N.N., Zorina M.V. // Rev. Sci. Instrum. 2015. V. 86. Iss. 1. P. 016102. https://doi.org./10.1063/1.4905336
  19. Takahashi H., Nishiguchi A., Nagata H., Kataoka H., Fujishima M. // Thin Solid Films. 1996. V. 281. P. 348. https://doi.org./10.1016/0040-6090(96)08631-2
  20. Condon J.B., Schober T. // J. Nucl. Mater. 1993. V. 207. P. 1. https://doi.org./10.1016/0022-3115(93)90244-S

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (126KB)
3.

Baixar (1MB)

Declaração de direitos autorais © Р.М. Смертин, М.М. Барышева, С.А. Гарахин, М.В. Зорина, С.Ю. Зуев, В.Н. Полковников, Н.И. Чхало, Д.Б. Радищев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies