Measurements of Thermophysical Characteristics of Thin Film Metal Filters for Extreme Ultraviolet Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Knowledge of the emissivity and thermal conductivity of thin metal films used in conjunction with multilayer mirrors for spectral selection of radiation in the extreme ultraviolet and soft X-ray wavelength ranges is necessary in order to correctly calculate the heating of film elements at high heat loads. Heating is associated with the absorption in the film of a significant fraction of the incident intensity, and the concept of a high heat load is somewhat arbitrary, since even at an absorbed intensity level of the order of 1 W/cm2 a freestanding film can be heated in vacuum by several hundred degrees. In the first approximation, to estimate the thermal conductivity coefficient, one could use tabular values for massive samples of the corresponding metals or use the well-known Wiedemann–Franz law which links the thermal conductivity and the electrical resistivity of the sample – the latter is easier to be measured. However, an analysis of the literature data indicates significant errors that are possible when using any of these approaches. Therefore, in this work, we have measured the thermal conductivity directly by processing the temperature distribution obtained by IR pyrometry over a film sample mounted on a heated frame or heated by a flowing electric current. Thermophysical characteristics (thermal conductivity and emissivity) were determined for samples of film absorption filters based on Mo, Al, and Be of submicron thickness (from 100 nm), as well as for films of copper – a metal whose bulk samples have high thermal and electrical conductivity. As expected, significant differences were found between the thermal and electrical properties of the film materials and the properties of the same metals in monolithic samples.

About the authors

A. Ya. Lopatin

Institute for Physics of Microstructures RAS

Author for correspondence.
Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

V. I. Luchin

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

N. N. Salashchenko

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

N. N. Tsybin

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

N. I. Chkhalo

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

References

  1. Brouns D. // Adv. Opt. Technol. 2017. V. 6. Iss. 3–4. P. 221. https://www.doi.org/10.1515/aot-2017-0023
  2. Van de Kerkhof M., Jasper H., Levasier L., Peeters R., van Es R., Bosker J.-W., Zdravkov A., Lenderink E., Evangelista F., Broman P., Bilski B., Last T. // Proc. SPIE. 2017. V. 10143. P. 101430D. https://www.doi.org/10.1117/12.2258025
  3. Барышева М.М., Зуев С.Ю., Лопатин А.Я., Лучин В.И., Пестов А.Е., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И. // Журнал технической физики. 2020. Т. 90. Вып. 11. С. 1806. https://www.doi.org/10.21883/JTF.2020.11.49966.150-20
  4. Салащенко Н.Н., Чхало Н.И. Состояние дел и перспективы развития рентгеновской литографии // Труды школы молодых ученых “Современная рентгеновская оптика – 2022”. 19–22 сентября 2022, Нижний Новгород. С. 72. http://modern.xray-optics.ru
  5. Smith H.I. // J. Vac. Sci. Technol. B. 1996. V. 14. № 6. P. 4318. https://www.doi.org/10.1116/1.589044
  6. Okada M., Kishiro T., Yanagihara K., Ataka M., Anazawa N., Matsui S. // J. Vac. Sci. Technol. B. 2010. V. 28. № 4. P. 740. https://www.doi.org/10.1116/1.3449270
  7. Hädrich M., Siefke T., Banash M., Zeitner U.D. // Photonics Views. 2022. V. 19. Iss. 5. P. 28. https://www.doi.org/10.1002/phvs.202200036
  8. Hust J.G., Lankford A.B. Thermal conductivity of aluminum, copper, iron, and tungsten for temperatures from 1 K to the melting point. National Bureau of Standards, Boulder, CO (USA). Chemical Engineering Science Div. 1984.
  9. Avery A.D., Mason S.J., Basset D., Wesenberg D., Zink B.L. // Phys. Rev. B. 2015. V. 92. Iss. 21. P. 214410. https://www.doi.org/10.1103/PhysRevB.92.214410
  10. Cheng Z., Liu L., Xu S., Lu M., Wang X. // Sci. Rep. 2015. V. 5. № 1. P. 1. https://www.doi.org/10.1038/srep10718
  11. Zhang X., Xie H., Fujii M., Ago H., Takahashi K., Ikuta T., Abe H., Shimizu T. // Appl. Phys. Let. 2005. V. 86. № 17. P. 171912. https://www.doi.org/10.1063/1.1921350
  12. Völklein F., Reith H., Meier A. // Physica Status Solidi A. 2013. V. 210. Iss. 1. P. 106. https://www.doi.org/10.1002/pssa.201228478
  13. Kim D.J., Kim D.S., Cho S., Kim S.W., Lee S.H., Kim J.C. // Int. J. Thermophys. 2004. V. 25. № 1. P. 281. https://www.doi.org/10.1023/b:ijot.0000022340.65615.22
  14. Bodenschatz N., Liemert A., Schnurr S., Wiedwald U., Ziemann P. // Rev. Sci. Instr. 2013. V. 84. № 8. P. 084904. https://www.doi.org/10.1063/1.4817582
  15. Zhu L.D., Sun F.Y., Zhu J., Tang D.W., Li Y.H., Guo C.H. // Chin. Phys. Lett. 2012. V. 29. № 6. P. 066301. https://www.doi.org/10.1088/0256-307X/29/6/066301
  16. Greppmair A., Stoib B., Saxsena N., Gerstberger C., Müller-Bushbaum P., Stutzmann M., Brandt M.S. // Rev. Sci. Instr. 2017. V. 88. № 4. P. 044903. https://www.doi.org/10.1063/1.4979564
  17. Гусев С.А., Дроздов М.Н., Клюенков Е.Б., Лопатин А.Я., Лучин В.И., Парьев Д.Е., Пестов А.Е., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И., Шмаенок Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2012. № 6. С. 23.
  18. Chkhalo N.I., Drozdov M.N., Gusev S.A., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Tatarskiy D.A., Tsybin N.N., Zuev S.Yu. // Appl. Opt. 2019. V. 58. № 1. P. 21. https://www.doi.org/10.1364/AO.58.000021
  19. Зуев С.Ю., Лопатин А.Я., Лучин В.И., Салащенко Н.Н., Татарский Д.А., Цыбин Н.Н., Чхало Н.И. // Журнал технической физики. 2022. Т. 92. Вып. 1. С. 92. https://www.doi.org/10.21883/JTF.2022.01.51857.197-21
  20. Chkhalo N.I., Drozdov M.N., Kluenkov E.B., Kuzin S.V., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Tsybin N.N., Zuev S.Yu. // Appl. Opt. 2016. V. 55. № 17. P. 4683. https://www.doi.org/10.1364/AO.55.004683
  21. Volkov Y.A., Palatnik L.S., Pugachev A.T. // Zh. Eksp. Teor. Fiz. 1976. V. 70. P. 2244.
  22. Boiko B.T., Pugachev A.T., Bratsychin V.M. // Thin Solid Films. 1973. V. 17. Iss. 2. P. 157. https://www.doi.org/10.1016/0040-6090(73)90124-7
  23. Kralik T., Musilova V., Hanzelka P., Frolec J. // Metrologia. 2016. V. 53. № 2. P. 743. https://www.doi.org/10.1088/0026-1394/53/2/743

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (432KB)
3.

Download (561KB)
4.

Download (176KB)
5.

Download (59KB)
6.

Download (84KB)
7.

Download (31KB)
8.

Download (153KB)

Copyright (c) 2023 А.Я. Лопатин, В.И. Лучин, Н.Н. Салащенко, Н.Н. Цыбин, Н.И. Чхало

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies