Measurements of Thermophysical Characteristics of Thin Film Metal Filters for Extreme Ultraviolet Radiation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Knowledge of the emissivity and thermal conductivity of thin metal films used in conjunction with multilayer mirrors for spectral selection of radiation in the extreme ultraviolet and soft X-ray wavelength ranges is necessary in order to correctly calculate the heating of film elements at high heat loads. Heating is associated with the absorption in the film of a significant fraction of the incident intensity, and the concept of a high heat load is somewhat arbitrary, since even at an absorbed intensity level of the order of 1 W/cm2 a freestanding film can be heated in vacuum by several hundred degrees. In the first approximation, to estimate the thermal conductivity coefficient, one could use tabular values for massive samples of the corresponding metals or use the well-known Wiedemann–Franz law which links the thermal conductivity and the electrical resistivity of the sample – the latter is easier to be measured. However, an analysis of the literature data indicates significant errors that are possible when using any of these approaches. Therefore, in this work, we have measured the thermal conductivity directly by processing the temperature distribution obtained by IR pyrometry over a film sample mounted on a heated frame or heated by a flowing electric current. Thermophysical characteristics (thermal conductivity and emissivity) were determined for samples of film absorption filters based on Mo, Al, and Be of submicron thickness (from 100 nm), as well as for films of copper – a metal whose bulk samples have high thermal and electrical conductivity. As expected, significant differences were found between the thermal and electrical properties of the film materials and the properties of the same metals in monolithic samples.

About the authors

A. Ya. Lopatin

Institute for Physics of Microstructures RAS

Author for correspondence.
Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

V. I. Luchin

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

N. N. Salashchenko

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

N. N. Tsybin

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

N. I. Chkhalo

Institute for Physics of Microstructures RAS

Email: lopatin@ipm.sci-nnov.ru
Russia, 603087, Nizhny Novgorod

References

  1. Brouns D. // Adv. Opt. Technol. 2017. V. 6. Iss. 3–4. P. 221. https://www.doi.org/10.1515/aot-2017-0023
  2. Van de Kerkhof M., Jasper H., Levasier L., Peeters R., van Es R., Bosker J.-W., Zdravkov A., Lenderink E., Evangelista F., Broman P., Bilski B., Last T. // Proc. SPIE. 2017. V. 10143. P. 101430D. https://www.doi.org/10.1117/12.2258025
  3. Барышева М.М., Зуев С.Ю., Лопатин А.Я., Лучин В.И., Пестов А.Е., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И. // Журнал технической физики. 2020. Т. 90. Вып. 11. С. 1806. https://www.doi.org/10.21883/JTF.2020.11.49966.150-20
  4. Салащенко Н.Н., Чхало Н.И. Состояние дел и перспективы развития рентгеновской литографии // Труды школы молодых ученых “Современная рентгеновская оптика – 2022”. 19–22 сентября 2022, Нижний Новгород. С. 72. http://modern.xray-optics.ru
  5. Smith H.I. // J. Vac. Sci. Technol. B. 1996. V. 14. № 6. P. 4318. https://www.doi.org/10.1116/1.589044
  6. Okada M., Kishiro T., Yanagihara K., Ataka M., Anazawa N., Matsui S. // J. Vac. Sci. Technol. B. 2010. V. 28. № 4. P. 740. https://www.doi.org/10.1116/1.3449270
  7. Hädrich M., Siefke T., Banash M., Zeitner U.D. // Photonics Views. 2022. V. 19. Iss. 5. P. 28. https://www.doi.org/10.1002/phvs.202200036
  8. Hust J.G., Lankford A.B. Thermal conductivity of aluminum, copper, iron, and tungsten for temperatures from 1 K to the melting point. National Bureau of Standards, Boulder, CO (USA). Chemical Engineering Science Div. 1984.
  9. Avery A.D., Mason S.J., Basset D., Wesenberg D., Zink B.L. // Phys. Rev. B. 2015. V. 92. Iss. 21. P. 214410. https://www.doi.org/10.1103/PhysRevB.92.214410
  10. Cheng Z., Liu L., Xu S., Lu M., Wang X. // Sci. Rep. 2015. V. 5. № 1. P. 1. https://www.doi.org/10.1038/srep10718
  11. Zhang X., Xie H., Fujii M., Ago H., Takahashi K., Ikuta T., Abe H., Shimizu T. // Appl. Phys. Let. 2005. V. 86. № 17. P. 171912. https://www.doi.org/10.1063/1.1921350
  12. Völklein F., Reith H., Meier A. // Physica Status Solidi A. 2013. V. 210. Iss. 1. P. 106. https://www.doi.org/10.1002/pssa.201228478
  13. Kim D.J., Kim D.S., Cho S., Kim S.W., Lee S.H., Kim J.C. // Int. J. Thermophys. 2004. V. 25. № 1. P. 281. https://www.doi.org/10.1023/b:ijot.0000022340.65615.22
  14. Bodenschatz N., Liemert A., Schnurr S., Wiedwald U., Ziemann P. // Rev. Sci. Instr. 2013. V. 84. № 8. P. 084904. https://www.doi.org/10.1063/1.4817582
  15. Zhu L.D., Sun F.Y., Zhu J., Tang D.W., Li Y.H., Guo C.H. // Chin. Phys. Lett. 2012. V. 29. № 6. P. 066301. https://www.doi.org/10.1088/0256-307X/29/6/066301
  16. Greppmair A., Stoib B., Saxsena N., Gerstberger C., Müller-Bushbaum P., Stutzmann M., Brandt M.S. // Rev. Sci. Instr. 2017. V. 88. № 4. P. 044903. https://www.doi.org/10.1063/1.4979564
  17. Гусев С.А., Дроздов М.Н., Клюенков Е.Б., Лопатин А.Я., Лучин В.И., Парьев Д.Е., Пестов А.Е., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И., Шмаенок Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2012. № 6. С. 23.
  18. Chkhalo N.I., Drozdov M.N., Gusev S.A., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Tatarskiy D.A., Tsybin N.N., Zuev S.Yu. // Appl. Opt. 2019. V. 58. № 1. P. 21. https://www.doi.org/10.1364/AO.58.000021
  19. Зуев С.Ю., Лопатин А.Я., Лучин В.И., Салащенко Н.Н., Татарский Д.А., Цыбин Н.Н., Чхало Н.И. // Журнал технической физики. 2022. Т. 92. Вып. 1. С. 92. https://www.doi.org/10.21883/JTF.2022.01.51857.197-21
  20. Chkhalo N.I., Drozdov M.N., Kluenkov E.B., Kuzin S.V., Lopatin A.Ya., Luchin V.I., Salashchenko N.N., Tsybin N.N., Zuev S.Yu. // Appl. Opt. 2016. V. 55. № 17. P. 4683. https://www.doi.org/10.1364/AO.55.004683
  21. Volkov Y.A., Palatnik L.S., Pugachev A.T. // Zh. Eksp. Teor. Fiz. 1976. V. 70. P. 2244.
  22. Boiko B.T., Pugachev A.T., Bratsychin V.M. // Thin Solid Films. 1973. V. 17. Iss. 2. P. 157. https://www.doi.org/10.1016/0040-6090(73)90124-7
  23. Kralik T., Musilova V., Hanzelka P., Frolec J. // Metrologia. 2016. V. 53. № 2. P. 743. https://www.doi.org/10.1088/0026-1394/53/2/743

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (432KB)
3.

Download (561KB)
4.

Download (176KB)
5.

Download (59KB)
6.

Download (84KB)
7.

Download (31KB)
8.

Download (153KB)

Copyright (c) 2023 А.Я. Лопатин, В.И. Лучин, Н.Н. Салащенко, Н.Н. Цыбин, Н.И. Чхало

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».