Observation of Surface Plasmon Resonance in Monochromatic Terahertz Radiation on Indium Antimonide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Currently, the terahertz frequency range, which is on the border of the microwave and optical ranges, is being intensively mastered. One of the widely used materials in terahertz optics is indium antimonide (InSb), the plasma frequency ωp of which depends on the degree of doping, temperature, and surface illumination. The possibility of generating surface plasmon polaritons, a type of surface electromagnetic waves, on the surface of an InSb sample using the attenuated total reflectance method (ATR) (Otto scheme) is discussed. Using the scattering matrix formalism, the conditions for the highest efficiency of excitation of surface plasmon polaritons are established. If terahertz radiation with a frequency slightly less than ωp is used for this, the propagation length of such plasmons and the depth of their field penetration into the environment (air) are comparable to the radiation wavelength. It is possible to achieve surface plasmon resonance in the form of a sharp decrease in the intensity of monochromatic radiation reflected from the base of the ATR prism with a change in the angle of incidence and the size of the air gap. Test experiments were performed to observe surface plasmon resonance on an InSb wafer using a high-resistance silicon prism and monochromatic radiation (λ = 141 μm) from the Novosibirsk free electron laser. The dependence of the resonant dip on the size of the air gap separating the prism from the sample surface is studied, and its optimal (in the case of resonsnce) value is established for semiconductors with a plasma frequency in the terahertz range.

About the authors

I. Sh. Khasanov

Scientific and Technological Centre of Unique Instrumentation RAS; Peoples’ Friendship University of Russia named after Patrice Lumumba

Author for correspondence.
Email: khasanov@ntcup.ru
Russia, 117342, Moscow; Russia, 117198, Moscow

V. V. Gerasimov

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State Universiry

Author for correspondence.
Email: khasanov@ntcup.ru
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

O. E. Kameshkov

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State Universiry

Email: v.v.gerasimov3@gmail.com
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

A. K. Nikitin

Scientific and Technological Centre of Unique Instrumentation RAS

Email: v.v.gerasimov3@gmail.com
Russia, 117342, Moscow

V. V. Kassandrоv

Peoples’ Friendship University of Russia named after Patrice Lumumba

Email: v.v.gerasimov3@gmail.com
Russia, 117198, Moscow

References

  1. Soler M., Lechuga L.M. // J. Appl. Phys. 2021. V. 129. № 11. P. 111102. https://doi.org/10.1063/5.0042811
  2. Surface Plasmon Resonance Sensors. A Materials Guide to Design, Characterization, Optimization, and Usage, 2019.
  3. Berini P., De Leon I. // Nature Photon. 2012. V. 6. № 1. P. 16. https://doi.org/10.1038/nphoton.2011.285
  4. Ayata M., Fedoryshyn Y., Heni W., Baeuerle B., Josten A., Zahner M., Koch U., Salamin Y., Hoessbacher C., Haffner C., Elder D.L., Dalton L.R., Leuthold J. // Science. 2017. V. 358. № 6363. P. 630. https://doi.org/10.1126/science.aan5953
  5. Plasmonics and Super-Resolution Imaging. Singapore: Pan Stanford Publishing, 2017. p. 482.
  6. Carvalho W.O.F., Mejía-Salazar J.R. // Sensors (Basel). 2020. V. 20. № 9. P. 2488. https://doi.org/10.3390/s20092488
  7. Shrivastav A.M., Cvelbar U., Abdulhalim I. // Commun. Biol. 2021. V. 4. № 1. P. 70. https://doi.org/10.1038/s42003-020-01615-8
  8. Balbinot S., Srivastav A.M., Vidic J., Abdulhalim I., Manzano M. // Trends Food Sci. Technol. 2021. V. 111. P. 128. https://doi.org/10.1016/j.tifs.2021.02.057
  9. Phan Q.-H., Phan Q.-H., Lai Y.-R., Xiao W.-Z., Pham T.-T.-H., Lien C.-H., Lien C.-H. // Opt. Express. 2020. V. 28. № 17. P. 24889. https://doi.org/10.1364/OE.400721
  10. Chen X., Lindley-Hatcher H., Stantchev R.I., Wang J., Li K., Hernandez Serrano A., Taylor Z.D., Castro-Camus E., Pickwell-MacPherson E. // Chem. Phys. Rev. 2022. V. 3. № 1. P. 011311. https://doi.org/10.1063/5.0068979
  11. Banerjee A., Chakraborty B., Inokawa H., Nath Roy J. Terahertz Biomedical and Healthcare Technologies: Materials to Devices. Elsevier, 2020.
  12. Krotkus A. // J. Phys. D. 2010. V. 43. № 27. P. 273001. https://doi.org/10.1088/0022-3727/43/27/273001
  13. Ranjana J.S. Investigations on InSb Plasmonic Devices for Sensor Applications at Terahertz Frequencies. PhD Thesis. National Institute of Technology Karnataka, Surathkal, 2017.
  14. Barchiesi D. // New Perspectives in Biosensors Technology and Applications. / Ed. Serra P.A. 2011. Ch. 5. P. 105. https://doi.org/10.5772/16657
  15. Kameshkov O., Gerasimov V., Knyazev B. // Sensors. 2021. V. 22. № 1. P. 172. https://doi.org/10.3390/s22010172
  16. Gerasimov V.V., Knyazev B.A., Kotelnikov I.A., Nikitin A.K., Cherkassky V.S., Kulipanov G.N., Zhizhin G.N. // J. Opt. Soc. Am. B. 2013. V. 30. № 8. P. 2182. https://doi.org/10.1364/JOSAB.30.002182
  17. Chochol J., Postava K., Čada M., Vanwolleghem M., Mičica M., Halagačka L., Lampin J.-F., Pištora J. // J. Eur. Opt. Soc.-Rapid Publ. 2017. V. 13. № 1. P. 13. https://doi.org/10.1186/s41476-017-0044-x
  18. Levinshtein M., Rumyantsev S., Shur M. Handbook Series on Semiconductor Parameters. Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. World Scientific, 2000. 218 p.
  19. Агранович В.М., Миллс Д.Л. Поверхностные поляритоны: электромагнитные волны на поверхностях и границах раздела сред. М.: Наука, 1985. 525 с.
  20. Raether H. // Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1988. https://doi.org/10.1007/BFb0048319
  21. Barchiesi D., Otto A. // Riv. del Nuovo Cim. 2013. V. 36. № 5. P. 173. https://doi.org/10.1393/ncr/i2013-10088-9
  22. Shibayama J., Mitsutake K., Yamauchi J., Nakano H. // Microwave Opt. Technol. Lett. 2021. V. 63. № 1. P. 103. https://doi.org/10.1002/mop.32581
  23. Nazarov M.M., Bezus E.A., Shkurinov A.P. // Laser Phys. 2013. V. 23. № 5. P. 056008.
  24. Hilal M., Rashid B., Khan S.H., Khan A. // Mater. Chem. Phys. 2016. V. 184. P. 41. https://doi.org/10.1016/j.matchemphys.2016.09.009
  25. Комков О.С., Фирсов Д.Д., Львова Т.В., Седова И.В., Семeнов А.Н., Соловьeв В.А., Иванов С.В. // Физика твердого тела. 2016. Т. 58. Вып. 12. С. 2307.
  26. Nikitin A.K., Gerasimov V.V., Knyazev B.A., Lien N.T.H., Trang T.T. // J. Phys.: Conf. Ser. 2020. V. 1636. P. 012036. https://doi.org/10.1088/1742-6596/1636/1/012036
  27. Khasanov I.Sh., Zykova L.A., Nikitin A.K., Knyazev B.A., Gerasimov V.V., Trang T.T. Terahertz Surface Plasmon Resonance Microscopy Based on Ghost Imaging with Pseudo-Thermal Speckle Light. 2020 45th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 2020. P. 1. https://doi.org/10.1109/IRMMW-THz46771.2020.9370795
  28. Chochol J., Mičica M., Postava K., Vanwolleghem M., Lampin J.-F., Čada M., Pištora J. Demonstration of Magnetoplasmon Polariton at InSb/Dielectric Interface. 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018. P. 1. https://doi.org/10.1109/IRMMW-THz.2018.8510484
  29. Hirori H., Nagai M., Tanaka K. // Opt. Express. 2005. V. 13. № 26. P. 10801. https://doi.org/10.1364/OPEX.13.010801
  30. Nazarov M.M., Shkurinov A.P., Garet F., Coutaz J.-L. // IEEE Trans. Terahertz Sci. Technol. 2015. V. 5. № 4. P. 680. https://doi.org/10.1109/TTHZ.2015.2443562
  31. Postava K., Chochol J., Mičica M., Vanwolleghem M., Kolejak P., Halagačka L., Cada M., Pištora J., Lampin J.-F. // Proc. SPIE. 2016. V. 10142. P. 1014207. https://doi.org/10.1117/12.2264550
  32. Howells S.C., Schlie L.A. // Appl. Phys. Lett. 1996. V. 69. № 4. P. 550. https://doi.org/10.1063/1.117783
  33. Chochol J., Postava K., Čada M., Vanwolleghem M., Halagačka L., Lampin J.-F., Pištora J. // AIP Adv. 2016. V. 6. № 11. P. 115021. https://doi.org/10.1063/1.4968178
  34. Palik E. Handbook of Optical Constants of Solids [Vols. 1–4 combined]. AP, 1998.
  35. Wang Q., Tang Q., Zhang D., Wang Z., Huang Y. // Superlattices and Microstructures. 2014. V. 75. P. 955. https://doi.org/10.1016/j.spmi.2014.09.015
  36. Tao J., Hu B., He X.Y., Wang Q.J. // IEEE Trans. Nanotechnol. 2013. V. 12. № 6. P. 1191. https://doi.org/10.1109/TNANO.2013.2285127
  37. Isaac T.H., Gómez Rivas J., Sambles J.R., Barnes W.L., Hendry E. // Phys. Rev. B. 2008. V. 77. № 11. P. 113411. https://doi.org/10.1103/PhysRevB.77.113411
  38. Gu P., Tani M., Kono S., Sakai K., Zhang X.-C. // J. Appl. Phys. 2002. V. 91. № 9. P. 5533. https://doi.org/10.1063/1.1465507
  39. Litwin-Staszewska E., Szymańska W., Piotrzkowski R. // Phys. Stat. Sol. B. 1981. V. 106. № 2. P. 551. https://doi.org/10.1002/pssb.2221060217
  40. Chochol J., Postava K., Čada M., Pištora J. // Sci. Rep. 2017. V. 7. № 1. P. 13117. https://doi.org/10.1038/s41598-017-13394-0
  41. Львова Т.В., Дунаевский М.С., Лебедев М.В., Шахмин А.Л., Седова И.В., Иванов С.В. // Физика и техника полупроводников. 2013. Т. 47. Вып. 5. С. 710.
  42. Cunningham R.W., Gruber J.B. // J. Appl. Phys. 1970. V. 41. № 4. P. 1804. https://doi.org/10.1063/1.1659107
  43. Putley E.H. // Appl. Opt. 1965. V. 4. № 6. P. 649. https://doi.org/10.1364/AO.4.000649
  44. Fan F., Chen S., Chang S.-J. // IEEE J. Selected Topics Quantum Electronics. 2017. V. 23. № 4. https://doi.org/10.1109/JSTQE.2016.2537259
  45. Byszewski P., Kołodziejczak J., Zukotyński S. // Phys. Stat. Sol. B. 1963. V. 3. № 10. P. 1880. https://doi.org/10.1002/pssb.19630031014
  46. Byrnes S.J. // arXiv:1603.02720 [physics]. 2020
  47. Anisimov A.V., Khasanov I.Sh. // J. Phys.: Conf. Ser. 2021. V. 2091. № 1. P. 012067. https://doi.org/10.1088/1742-6596/2091/1/012067
  48. Gerasimov V.V. // J. Opt. Technol. 2010. V. 77. № 8. P. 465. https://doi.org/10.1364/JOT.77.000465
  49. Gerasimov V.V., Zhizhin G.N., Knyazev B.A., Kotelnikov I.A., Mitina N.A., Nikitin A.K. // Bull. Russ. Acad. Sci.: Phys. 2013. V. 77. № 9. P. 1167. https://doi.org/10.3103/S1062873813090141
  50. Knyazev B.A. // AIP Conf. Proc. 2020. V. 2299. № 1. P. 030001. https://doi.org/10.1063/5.0030349

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (156KB)
3.

Download (167KB)
4.

Download (134KB)
5.

Download (63KB)
6.

Download (83KB)
7.

Download (88KB)

Copyright (c) 2023 И.Ш. Хасанов, В.В. Герасимов, О.Э. Камешков, А.К. Никитин, В.В. Кассандров

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies