Layered Composite Materials Based on Ti/Ta/Hf/Ceramic to Solve Tasks under Extreme Conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Layered composite materials Ti/Ta/Hf/ ceramic were produced via self-propagating high-temperature synthesis (SHS) of pre-structured samples using metal foils (Ti, Hf, Ta, Ni) and reaction tapes (Ti + 0.65C), (Ti + 1.7B) and (5Ti + 3Si). Reaction tapes were prepared by cold rolling from powder mixtures. The microstructure, elemental and phase compositions of the synthesized multilayer composite materials were characterized by Scanning Electron Microscopy (SEM) and X-ray analysis. Their flexural strength was determined according to the scheme of three-point loading at temperatures of 25 and 1100°С. The microstructure analysis of produced materials showed that the joining in the combustion mode of metal foils and reaction tapes is provided due to reaction diffusion, mutual impregnation and chemical reactions occurring in reaction tapes and on the surface of metal foils. The formation of thin intermediate layers in the form of cermets and eutectic solutions provides the synthesized multilayer materials with good strength properties (up to 275 MPa at 25°С, up to 72 MPa at 1100°С). These results are of interest for the development of construction materials operating under extreme conditions.

About the authors

O. K. Kamynina

Osipyan Institute of Solid State Physics Russian Academy of Sciences

Author for correspondence.
Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

S. G. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

I. D. Kovalev

Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences

Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

D. V. Prokhorov

Osipyan Institute of Solid State Physics Russian Academy of Sciences

Email: kamynolya@gmail.com
Russia, 142432, Moscow Region, Chernogolovka

References

  1. Xu Y., Zhu J., Wu Z., Cao Y., Zhao Y., Zhang W. // Adv. Compos. Hybrid Mater. 2018. V. 1. P. 460. https://doi.org/10.1007/s42114-018-0032-7
  2. Jadoon A.K. // J. Mater. Sci. 2004. V. 39. P. 593. https://doi.org/10.1023/B:JMSC.0000011516.43086.20
  3. Le V.T., Ha N.S., Goo N.S. // Composites. Part B. 2021. V. 226. P. 109301.https://doi.org/10.1016/j.compositesb.2021.109301
  4. Wunderlich W. // Metals. 2014. V. 4. P. 410. https://www.doi.org/10.3390/met4030410
  5. Wang A., Gallino I., Riegler S.S., Lin Y.-T., Isaac N.A., Camposano Y.H.S., Matthes S., Flock D., Jacobs H.O., Yen H.-W., Schaaf P. // Mater. Design. 2021. V. 206. P. 109790. https://doi.org/10.1016/j.matdes.2021.109790
  6. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. // Int. Mater. Rev. 2017. V. 62. P. 203. https://doi.org/10.1080/09506608.2016.1243291
  7. Rogachev A.S., Vadchenko S.G., Nepapushev A.A., Rogachev S.A., Scheck Yu.B., Mukasyan A.S. // Adv. Eng. Mater. 2018. V. 20. P. 1701044. https://doi.org/10.1002/adem.201701044
  8. Buinevich V.S., Nepapushev A.A., Moskovskich D.O., Kuskov K.V., Yudin S.N., Mukasyan A.S. // Ceram. Int. 2021. V. 47. P. 30043. https://doi.org/10.1016/j.ceramint.2021.07.180
  9. Kurbatkina V.V., Patsera E.I., Levashov E.A. // Ceram. Int. 2019. V. 45. P. 4067. https://doi.org/10.1016/j.ceramint.2018.10.113
  10. Chen G., Yin J., Zhao S., Tang H., Qu X. // Int. J. Refr. Met. Hard Mater. 2019. V. 81. P. 71. https://doi.org/10.1016/j.ijrmhm.2019.02.020
  11. Bataev V.A., Golkovski M.G., Samoylenko V.V., Ruktuev A.A., Polyakov I.A., Kuksanov N.K. // Appl. Surf. Sci. 2018. V. 437. P. 181. https://doi.org/10.1016/j.apsusc.2017.12.114
  12. Wei D.B., Chen X.H., Zhang P.Z., Ding F., Li F.K., Yao Z.J. // Appl. Surf. Sci. 2018. V. 441. P. 448. https://doi.org/10.1016/j.apsusc.2018.02.058
  13. Zhang J., Wang S., Li W., Yu Yi., Jiang Ji. // Corrosion Sci. 2020. V. 164. P. 108348. https://doi.org/10.1016/j.corsci.2019.108348
  14. Li H., Yu Y., Fang B., Xiao P., Wang S. // J. Europ. Ceram. Soc. 2022. V. 42. P. 4651. https://doi.org/10.1016/j.jeurceramsoc.2022.04.034
  15. Peng X., Wang S., Li W., Yu Yi., Li H. // J. Am. Ceram. Soc. 2022. V. 105. № 6. P. 4291. https://doi.org/10.1111/jace.18337
  16. Bai X., Li Y., Fang X., Zheng Q., Song Y., Chong X., Feng J., Liu Q., Gao Y. // J. Alloys Compd. 2022. V. 818. P. 152829. https://doi.org/10.1016/j.jallcom.2022.165244
  17. Kamynina O.K., Vadchenko S.G., Shchukin A.S., Kovalev I.D. // Int. J. Self-Propag. High-Temp. Synth. 2016. V. 25. P. 238. https://doi.org/10.3103/S106138621604004X
  18. Kamynina O.K., Vadchenko S.G., Shchukin A.S. // Russ. J. Non-Ferrous Metals. 2019. V. 60. P. 422. https://doi.org/10.3103/S1067821219040035
  19. Vadchenko S.G. // Combust. Explos. Shock Waves. 2019. V. 55. P. 177. https://doi.org/10.1134/S0010508219020060
  20. Huang L., Wang H.Y., Li Q., Yin S.Q., Jiang Q.C. // J. Alloys Compd. 2008. V. 457. № 286–291. https://doi.org/10.1016/j.jallcom.2007.03.054
  21. Valenza F., Sobczak N., Sobczak J., Nowak R., Muolo M.L., Passerone A., Sitzia S., Cacciamani G. // J. Europ. Ceram. Soc. 2020. V. 40. № 2. P. 521. https://doi.org/10.1016/j.jeurceramsoc.2019.10.007
  22. Passerone A., Muolo M.L., Valenza F., Monteverde F., Sobczak N. // Acta Materialia. 2009. V. 57. № 2. P. 356. https://doi.org/10.1016/j.actamat.2008.09.016
  23. Kamynina O.K., Vadchenko S.G., Shkodich N.F., Kovalev I.D. // Metals. 2022. V. 12. № 1. P. 38. https://doi.org/10.3390/met12010038
  24. Vadchenko S.G., Suvorov D.S., Kamynina O.K., Mukhina N.I. // Combustion Explosion Shock Waves. 2021. V. 57. № 6. P. 672. https://doi.org/10.1134/S0010508221060058
  25. Liu R., Hou X.S., Yang S.Y., Chen C., Mao Y.R., Wang S., Zhong Z.H., Zhang Z., Lu P., Wu Y.C. // Mater. Characterization. 2021. V. 172. P. 110875. https://doi.org/10.1016/j.matchar.2021.110875
  26. Tang B., Tan Y., Xu T., Sun Z., Li X. // Coatings. 2020. V. 10. № 9. P. 813 https://doi.org/10.3390/coatings10090813
  27. Zhou Y.L., Niinomi M., Akahori T. // Mater. Transactions. 2004. V. 45. № 5. P. 1594. https://doi.org/10.2320/matertrans.45.1549
  28. Kurbatkina V.V., Patsera E.I., Smirnov D.V., Levashov E.A. // Rus. J. Non-Ferrous Metals. 2020. V. 61. № 6. P. 691. https://doi.org/10.3103/S1067821220060140
  29. Li Sh., Xiao L., Liu S., Zhang Ya., Xu J., Zhou X., Zhao G., Cai Zh., Zhao X. // J. Europ. Ceram. Soc. 2022. V. 42. № 12. P. 4866. https://doi.org/10.1016/j.jeurceramsoc.2022.05.009
  30. Cai X., Wang D., Wang Y., Yang Z. // J. Manufact. Process. 2021. V. 64. P. 1349. https://doi.org/10.1016/j.jmapro.2021.02.057

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (231KB)
3.

Download (681KB)
4.

Download (2MB)
5.

Download (954KB)
6.

Download (1MB)

Copyright (c) 2023 О.К. Камынина, С.Г. Вадченко, И.Д. Ковалев, Д.В. Прохоров

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».