Multilayer ZrO2/Cr Coating for Protection of E110 Zirconium Alloy from High-Temperature Oxidation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cr coatings with multilayer barrier composed of alternating ZrO2 and Cr layers with an individual thickness of each layer of 50 and 250 nm were prepared onto substrates made from zirconium E110 alloy using magnetron sputtering. The protective multilayer ZrO2/Cr coating on zirconium E110 alloy were studied under high-temperature oxidation in air at a temperature of 1100°C for 10, 20, 30 and 40 min. The lower rate of change in weight gain of samples having ZrO2/Cr barriers was found in comparison with samples coated by chromium during long-term oxidation tests. Diffraction measurements of samples were done under linear heating (50°С/min) in a range of temperature of 25–1250°С and next isothermal treatment for 20 min under high vacuum (10–3 Pa) using the in situ diffraction. It was found that the mutual diffusion of Cr-Zr at the interface between the protective coating having the multilayer barrier composed of alternating ZrO2 and Cr layers and zirconium alloy can be slowed down. This results in the retention of high content of α-Cr phase in the coating and, as a result, in the increase of the duration of the protective state of E110 alloy under the high-temperature oxidation in air.

About the authors

D. V. Sidelev

National Research Tomsk Polytechnic University

Author for correspondence.
Email: sidelevdv@tpu.ru
Russia, 634050, Tomsk

S. E. Ruchkin

National Research Tomsk Polytechnic University

Email: sidelevdv@tpu.ru
Russia, 634050, Tomsk

M. S. Syrtanov

National Research Tomsk Polytechnic University

Email: sidelevdv@tpu.ru
Russia, 634050, Tomsk

A. V. Pirozhkov

National Research Tomsk Polytechnic University

Email: sidelevdv@tpu.ru
Russia, 634050, Tomsk

P. N. Maximov

National Research Tomsk Polytechnic University

Email: sidelevdv@tpu.ru
Russia, 634050, Tomsk

References

  1. Brachet J.C., Rouesne E., Guilbert T. et al. // Corrosion Sci. 2020. V. 167. P. 108537. https://www.doi.org/10.1016/j.corsci.2020.108537
  2. Krejcí J., Kabatova J., Manoch F. et al. // Nucl. Engineer. Technol. 2020. V. 52. Iss. 3. P. 597. https://www.doi.org/10.1016/j.net.2019.08.015
  3. Park J.H., Kim H.-G., Park J. et al. // Surf. Coat. Technol. 2015. V. 280. P. 256. https://www.doi.org/10.1016/j.surfcoat.2015.09.022
  4. Chen H., Wang X., Zhang R. // Coatings. 2020. V. 10. № 9. P. 808. https://www.doi.org/10.3390/coatings100908085
  5. Tang C., Stueber M., Seifert H.J., Steinbrueck M. // Corrosion Rev. 2017. V. 35. P. 141. https://www.doi.org/10.1515/corrrev-2017-0010
  6. Isaev R.Sh., Safonov D.A., Dzhumaev P.S., Korenevskiy E.L. // Tsvetnye Metally. 2022. V. 10. P. 27. https://www.doi.org/10.17580/tsm.2022.10.04
  7. Yang J., Stegmaier U., Tang C. et al. // J. Nucl. Mater. 2021. V. 547. P. 152806. https://www.doi.org/10.1016/j.jnucmat.2021.152806
  8. Wang Y., Zhou W., Wen Q. et al. // Surf. Coat. Technol. 2018. V. 344. P. 141. https://www.doi.org/10.1016/j.surfcoat.2018.03.016
  9. Brachet J.C., Idarraga-Trujillo I., Le Flem M. et al. // J. Nucl. Mater. 2019. V. 517. P. 268. https://www.doi.org/10.1016/j.jnucmat.2019.02.018
  10. Xu C., Wang X., Zhouet Q. et al. // Mater. Character. 2023. V. 197. № 112701, https://doi.org/10.1016/j.matchar.2023.112701
  11. Wang X., Liao Y., Xu Ch. et al. // J. Al. Comp. 2021. V. 883. P. 160798. https://doi.org/10.1016/j.jallcom.2021.160798
  12. Wang X., Guan H., Liaoet Y. et al. // Corros. Sci. 2021. V. 187. P. 109494. https://doi.org/10.1016/j.corsci.2021.109494
  13. Musil J. // RSC Advances. 2015. Iss. 74. P. 60482. https://www.doi.org/10.1039/C5RA09586G
  14. Kuprin A.S., Belous V.A., Voyevodin V.N. et al. // J. Nucl. Mater. 2015. V. 465. P. 400. https://www.doi.org/10.1016/j.jnucmat.2015.06.016
  15. Meng C., Yang L., Wu Y. et al. // J. Nucl. Mater. 2019. V. 515. P. 354. https://www.doi.org/10.1016/j.jnucmat.2019.01.006
  16. Sidelev D.V., Ruchkin S.E., Syrtanov M.S. et al. // Surf. Coat. Technol. 2022. V. 433. P. 128131. https://www.doi.org/10.1016/j.surfcoat.2022.128131
  17. Xiang Y., Liu Ch., Li Zh. et al. // Surf. Coat. Technol. 2022. V. 429. P. 127947. https://doi.org/10.1016/j.surfcoat.2021.127947
  18. Sidelev D.V., Syrtanov M.S., Ruchkin S.E. et al. // Coatings. 2021. V. 11. № 2. P. 227. https://www.doi.org/10.3390/coatings11020227
  19. Pechin W.H., Williams D.E., Larsen W.L. // ASM Trans. 1964. V. 57. P. 464.
  20. Kashkarov E.B., Sidelev D.V., Pushilina N.S. et al. // Corrosion Sci. 2022. V. 203. P. 110359. https://www.doi.org/10.1016/j.corsci.2022.110359

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (373KB)
3.

Download (74KB)
4.

Download (80KB)
5.

Download (689KB)

Copyright (c) 2023 Д.В. Сиделев, С.Е. Ручкин, М.С. Сыртанов, А.В. Пирожков, П.Н. Максимов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies