Neutron Source from (γ,n) Reactions at a Laser-Plasma Accelerator and Its Use for Electron Beam Characterization

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Development of compact laboratory-scale neutron sources is of importance both for fundamental physical research and practical applications (for example, neutron radiography and spectroscopy). One of the most promising approaches to the development of such a source is the implementation of laser-plasma accelerated electrons or ions, and the subsequent initiation of nuclear reactions (γ,n), (p,n) or (d,n) with the emission of neutrons. In the present work, a neutron source produced via photodisintegration reactions (γ,n) using an electron beam from a one TW laser-plasma accelerator has been created and characterized. Maximum observed neutron flux was ~105 neutrons/s · srad with a ~106 neutrons per J of laser radiation efficiency. With constant efficiency and 10 times increase in the laser pulse energy the neutron flux will be sufficient for certain applications. Numerical Monte-Carlo simulations of neutron generation by an electron beam with parameters corresponding to those measured experimentally were also carried out. It was demonstrated that the number of generated neutrons can be used to estimate the charge and average energy of accelerated electrons. The obtained values are in good agreement with the values measured by the standard beam diagnostic tools.

作者简介

D. Gorlova

Faculty of Physics, Lomonosov Moscow State University; Institute for Nuclear Research of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow; Russia, 117312, Moscow

A. Zavorotny

Faculty of Physics, Lomonosov Moscow State University; Institute for Nuclear Research of Russian Academy of Sciences

Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow; Russia, 117312, Moscow

I. Tsymbalov

Faculty of Physics, Lomonosov Moscow State University; Institute for Nuclear Research of Russian Academy of Sciences

Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow; Russia, 117312, Moscow

K. Ivanov

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of Russian Academy of Sciences

Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow; Russia, 119991, Moscow

S. Shulyapov

Faculty of Physics, Lomonosov Moscow State University; N.N. Andreyev Acoustics Institute of Russian Academy of Sciences

Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow; Russia, 117292, Moscow

R. Volkov

Faculty of Physics, Lomonosov Moscow State University

Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow

A. Savel’ev

Faculty of Physics, Lomonosov Moscow State University; Lebedev Physical Institute of Russian Academy of Sciences

Email: gorlova.da14@physics.msu.ru
Russia, 119991, Moscow; Russia, 119991, Moscow

参考

  1. Gales S., Tanaka K.A., Balabanski D.L., Negoita F., Stutman D., Tesileanu O., Ur C.A., Ursescu D., Andrei I., Ataman S. et al. // Reports Prog. Phys. 2018. V. 81. № 9. P. 094301. https://www.doi.org/10.1088/1361-6633/AACFE8
  2. Umstadter D. // J. Phys. D. Appl. Phys. 2003. V. 36. № 8. P. R151. https://www.doi.org/10.1088/0022-3727/36/8/202
  3. Alejo A., Ahmed H., Green A., Mirfayzi S.R., Borghesi M., Kar S. // Nuovo Cim. della Soc. Ital. di Fis. C. 2015. V. 38. № 6. P. 1. https://www.doi.org/10.1393/ncc/i2015-15188-8
  4. Nedorezov V.G., Rykovanov S.G., Savel’ev A.B. // Uspekhi Fiz. Nauk. 2021. T. 191. C. 1281. https://www.doi.org/10.3367/ufnr.2021.03.038960
  5. Filges D., Goldenbaum F. // Handbook of Spallation Research. Germany, Wiley, Weinheim, 2009.
  6. Altieri S., Protti N. // Ther. Radiol. Oncol. 2018. V. 2. P. 47. https://www.doi.org/10.21037/TRO.2018.10.08
  7. Ковальчук М.В., Воронин В.В., Гаврилов С.В., Гартвик А.В., Дьячков М.В., Ипатов Д.А., Матвеев В.А., Тарнавич В.В., Ульянов В.А. // Кристаллография. 2022. Т. 67. № 5. С. 785. https://www.doi.org/10.31857/S0023476122050095
  8. Anderson I.S., Andreani C., Carpenter J.M., Festa G., Gorini G., Loong C.K., Senesi R. // Phys. Rep. 2016. V. 654. P. 1. https://www.doi.org/10.1016/J.PHYSREP.2016.07.007
  9. Ikeda Y., Taketani A., Takamura M., Sunaga H., Kumagai M., Oba Y., Otake Y., Suzuki H. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 833. P. 61. https://www.doi.org/10.1016/J.NIMA.2016.06.127
  10. Alvarez J., Fernández-Tobias J., Mima K., Nakai S., Kar S., Kato Y., Perlado J.M. // Phys. Procedia. C. 2014. V. 60. P. 29. https://www.doi.org/10.1016/j.phpro.2014.11.006
  11. Kleinschmidt A., Bagnoud V., Deppert O., Favalli A., Frydrych S., Hornung J., Jahn D., Schaumann G., Tebartz A., Wagner F. et al. // Phys. Plasmas. 2018. V. 25. № 5. P. 053101. https://www.doi.org/10.1063/1.5006613
  12. Ivanov K.A., Shulyapov S.A., Gorlova D.A., Mordvintsev I.M., Tsymbalov I.N., Savel’ev A.B. // Quantum Electron. 2021. V. 51. № 9. P. 768. https://www.doi.org/10.1070/QEL17604/XML
  13. Feng J., Fu C., Li Y., Zhang X., Wang J., Li D., Zhu C., Tan J., Mirzaie M., Zhang Z. et al. // High Energy Density Phys. 2020. V. 36. P. 100753. https://www.doi.org/10.1016/j.hedp.2020.100753
  14. Arikawa Y., Utsugi M., Alessio M., Nagai T., Abe Y., Kojima S., Sakata S., Inoue H., Fujioka S., Zhang Z. et al. // Plasma Fusion Res. 2015. V. 10. Iss. 1. P. 2404003. https://www.doi.org/10.1585/pfr.10.2404003
  15. Phillips T.W., Cable M.D., Cowan T.E., Hatchett S.P., Henry E.A., Key M.H., Perry M.D., Sangster T.C., Stoyer M.A. // Rev. Sci. Instrum. 1999. V. 70. № 1. P. 1213. https://www.doi.org/10.1063/1.1149337
  16. Mirfayzi S.R., Yogo A., Lan Z., Ishimoto T., Iwamoto A., Nagata M., Nakai M., Arikawa Y., Abe Y., Golovin D. et al. // Sci. Rep. 2020. V. 10. № 1. P. 20157. https://www.doi.org/10.1038/s41598-020-77086-y
  17. Mirfayzi S.R., Ahmed H., Doria D., Alejo A., Ansell S., Clarke R.J., Gonzalez-Izquierdo B., Hadjisolomou P., Heathcote R., Hodge T. et al. // Appl. Phys. Lett. 2020. V. 116. № 17. P. 174102. https://www.doi.org/10.1063/5.0003170
  18. Jung D., Falk K., Guler N., Deppert O., Devlin M., Favalli A., Fernandez J.C., Gautier D.C., Geissel M., Haight R. et al. // Phys. Plasmas. 2013. V. 20. № 5. P. 056706. https://www.doi.org/10.1063/1.4804640
  19. Higginson D.P., McNaney J.M., Swift D.C., Bartal T., Hey D.S., Kodama R., Le Pape S., MacKinnon A., Mariscal D., Nakamura H. et al. // Phys. Plasmas. 2010. V. 17. № 10. P. 100701. https://www.doi.org/10.1063/1.3484218
  20. Günther M.M., Rosmej O.N., Tavana P., Gyrdymov M., Skobliakov A., Kantsyrev A., Zähter S., Borisenko N.G., Pukhov A., Andreev N.E. // Nature Commun. 2022. V. 13. № 131. P. 1. https://www.doi.org/10.1038/s41467-021-27694-7
  21. Horn’y V., Chen S.N., Davoine X., et al. // High-flux neutron generation by laser-accelerated ions from single- and double-layer targets. Sci Rep 12, 19767 (2022). https://doi.org/10.1038/s41598-022-24155-z
  22. Magill J., Schwoerer H., Ewald F., Galy J., Schenkel R., Sauerbrey R.// Appl. Phys. B. 2003. V. 77. № 4. P. 387. https://www.doi.org/10.1007/S00340-003-1306-4
  23. Tsymbalov I.N., Volkov R.V., Eremin N.V., Ivanov K.A., Nedorezov V.G., Paskhalov A.A., Polonskij A.L., Savel’ev A.B., Sobolevskij N.M., Turinge A.A. et al. // Phys. At. Nucl. 2017. V. 80. № 3. P. 397. https://www.doi.org/10.1134/S1063778817030231
  24. Malka G., Aleonard M.M., Chemin J.F., Claverie G., Harston M.R., Scheurer J.N., Tikhonchuk V., Fritzler S., Malka V., Balcou P. et al. // Phys. Rev. E. 2002. V. 66. № 6. P. 066402. https://www.doi.org/10.1103/PhysRevE.66.066402
  25. Ledingham K.W.D., Spencer I., McCanny T., Singhal R.P., Santala M.I.K., Clark E., Watts I., Beg F.N., Zepf M., Krushelnick K. et al. // Phys. Rev. Lett. 2000. V. 84. № 5. P. 899. https://www.doi.org/10.1103/PhysRevLett.84.899
  26. Tsymbalov I., Gorlova D., Ivanov K., Shulyapov S., Prokudin V., Zavorotny A., Volkov R., Bychenkov V., Nedorezov V., Savel’ev A. et al. // Plasma Phys. Control. Fusion. 2021. V. 63. № 2. P. 022001. https://www.doi.org/10.1088/1361-6587/abcc3c
  27. Tsymbalov I., Gorlova D., Shulyapov S., Prokudin V., Zavorotny A., Ivanov K., Volkov R., Bychenkov V., Nedorezov V., Paskhalov A. et al. // Plasma Phys. Control. Fusion. 2019. V. 61. № 7. P. 075016. https://www.doi.org/10.1088/1361-6587/ab1e1d
  28. Tsymbalov I.N., Volkov R.V., Eremin N.V., Ivanov K.A., Nedorezov V.G., Paskhalov A.A., Polonskij A.L., Savel’ev A.B., Sobolevskij N.M., Turinge A.A. et al. // Phys. At. Nucl. 2017. V. 80. № 3. P. 397. https://www.doi.org/10.1134/S1063778817030231
  29. Gorlova D., Tsymbalov I., Ivanov K., Zavorotnyi A., Nedorezov V., Savel’ev A. // Proc. SPIE 2021. V. 11779. https://doi.org/10.1117/12.2589123
  30. Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G. et al. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 506. № 3. P. 250. https://doi.org/10.1016/S0168-9002(03)01368-8
  31. Chadwick M.B., Herman M., Obložinský P., Dunn M.E., Danon Y., Kahler A.C., Smith D.L., Pritychenko B., Arbanas G., Arcilla R. et al. // Nucl. Data Sheets. 2011. V. 112. № 12. P. 2887. https://www.doi.org/10.1016/J.NDS.2011.11.002
  32. Kutsenko B. New Geant4 photonuclear cross-section model. https://cds.cern.ch/record/2778865/.
  33. Otuka N., Dupont E., Semkova V., Pritychenko B., Blokhin A.I., Aikawa M., Babykina S., Bossant M., Chen G., Dunaeva S. et al. // Nucl. Data Sheets. 2014. V. 120. P. 272. https://www.doi.org/10.1016/J.NDS.2014.07.065
  34. Kawano T., Cho Y.S., Dimitriou P., Filipescu D., Iwamoto N., Plujko V., Tao X., Utsunomiya H., Varlamov V., Xu R. et al. // Nucl. Data Sheets. 2020. V. 163. P. 109. https://www.doi.org/10.1016/J.NDS.2019.12.002

补充文件

附件文件
动作
1. JATS XML
2.

下载 (76KB)
3.

下载 (172KB)
4.

下载 (251KB)
5.

下载 (257KB)
6.

下载 (117KB)

版权所有 © Д.А. Горлова, А.Ю. Заворотный, И.Н. Цымбалов, К.А. Иванов, С.А. Шуляпов, Р.В. Волков, А.Б. Савельев, 2023

##common.cookie##