Concept of Beam Instrumentation System for High-Intensity DARIA Proton Linac

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Beam diagnostics is one of the main tasks during operation of charged particle accelerators. The paper presents a concept of a beam instrumentation system that provides diagnostic procedures and allows to measure and adjust the clue beam parameters in a linear resonant proton accelerator of a compact neutron source DARIA: current, position, profile, emittance, energy, phase characteristics. An important requirement is to provide measurements during the accelerator tuning procedure, when the beam parameters can be changed in a wide range. It is proposed to include in the main structure of the system such types of diagnostic devices as beam current transformers, stripline beam position monitors, wire scanners, ionization beam cross-section monitor, slit emittance meter, bunch shape monitor, water-cooled Faraday cup. A particular attention is paid to a non-destructive method due to a high pulse and average beam intensity in conjunction with a relatively low beam energy to provide continuous operational control of the beam parameters. Main physical principles of operation, typical characteristics, as well as features of the practical implementation of the devices are included. A possible arrangement layout of diagnostic units along the accelerator is proposed, taking into account peculiarities of using the proposed types of detectors in various parts of the accelerator.

作者简介

S. Gavrilov

Institute for Nuclear Research Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: s.gavrilov@inr.ru
Russia, 117312, Moscow; Russia, 141700, Dolgoprudny

A. Titov

Institute for Nuclear Research Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: s.gavrilov@inr.ru
Russia, 117312, Moscow; Russia, 141700, Dolgoprudny

参考

  1. Kropachev G., Kulevoy T., Sitnikov A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2019. V. 13. № 6. P. 1126. https://www.doi.org/10.1134/S1027451019060399
  2. Blokland W. Beam Current Monitors // Proceedings of USPAS and University New Mexico Albuquerque NM, June 23–26, 2009. P. 40.
  3. Bayle H. Effective Shielding to Measure beam current from an ion source // Review of Scientific Instruments. 2014. V. 85. P. 02A713.
  4. Barnes M., Ducimetiere L. Ferrite Materials for In-Vacuum Instruments. // Proceedings of ARIES Workshop” Materials and Engineering Technologies for Particle Accelerator Beam Diagnostics Instruments”, 2021.
  5. Sosa A., Bravin E, Cantero Esteban, Welsch Carsten. Optimization of a Short Faraday Cup for Low-Energy Ions using Numerical Simulations // International Beam Instrumentation Conference, IBIC 2014, January 2014. P. 137. https://www.researchgate.net/publication/287050743_ Optimization_of_a_short_faraday_cup_for_low-energy_ions_using_numerical_simulations.
  6. Cheymol B. Development of Beam Transverse Profile and Emittance Monitors for the CERN LINAC4, Universite Clermont-Ferrand II – Blaise Pascal, 15. 12. 2011. https://www.researchgate.net/publication/278639201_ Development_of_beam_transverse_profi_le_and_emittance_monitors_for_the_CERN_LINAC4.
  7. Bank A., Forck P. Residual Gas Fluorescence for Profile Measurements at the GSI UNILAC // Proceedings of DIPAC2003. Darmstadt: Mainz, Germany, 2003. https://www.researchgate.net/publication/228390584_ Residual_Gas_Fluorescence_for_Profile_Measurements_at_the_GSI_UNILAC.
  8. Dimov G. et al. // Soviet Atomic Energy. 1967. V. 22. № 5. P. 441.
  9. Gavrilov S., Feschenko A., Reinhardt-Nickoulin P., Vasilyev I. // J. Instrumentation. 2014. M. 9. P. 01011. https://www.doi.org/10.1088/1748-0221/9/01/P01011
  10. Paramo A., Bustinduy I. // Specific Technical Prescriptions for the Manufacturing of the Emittance Meter Unit for the ESS MEBT. MEBT Bilbao Instrumentation CDR, 2017.
  11. Tan J., Sordet M., Soby L. Beam Position Monitor System for the CERN LINAC4 // Proceedings of DIPAC2011. Hamburg, Germany, 2011. P. 272.
  12. Sato S., Miura A., Tomisawa T. et al. Study of J-PARC Linac Beam Position Monitor as Phase Monitor // Proceedings of PAC09. Vancouver: BC, Canada, 2009, TH5RFP061.
  13. Tan J., Sordet M., Soby L., Guillot-Vignot F., Gerard D., Ludwig M., Steyaert D. et al. Development of BPMs for the Linac4 // Linac4 Instrumentation Review. Zurich, October 2011. https://indico.cern.ch/event/153694/.
  14. Бронштейн И., Фрайман Б. Вторичная электронная эмиссия. М.: Наука, 1969.
  15. Feschenko V., Ostroumov P.N. Bunch Shape Measuring Technique and Its Application for an Ion Linac Tuning // Proc. of the 1986 Linear Acc. Conf. Stanford, 1986. P. 323.
  16. Feschenko A.V., Ostroumov P.N. Bunch Shape Measurements at the INR Linac // Proc. of the Workshop on Advanced Beam Instrumentation. KEK, Tsukuba, Japan, April 22–24, 1991. P. 236.
  17. Feschenko A. Methods and Instrumentation for Bunch Shape Measurements // Proc. of PAC2001. Chicago, IL, USA, June 18–22, 2001. P. 517.
  18. Gavrilov S., Feschenko A., Chermoshentsev D. // J. Instrumentation, 2017. V. 12. P. 12014. https://www.doi.org/10.1088/1748-0221/12/12/P12014
  19. Sieber T., Forck P., Barth W., Dziuba F., Feschenko A., Gavrilov S., Heilmann M., Kuerzeder T., Miski-Oglu M., Reeg H., Reiter A., Yaramyshev S. Bunch Shape Measurements at the GSI CW-linac Prototype // Proceedings of IPAC2018. Vancouver, Canada, 2018. P. 2091. https://www.doi.org/10.18429/JACoW-IPAC2018-WEPAK006
  20. ARIES workshops. Experiences during Hadron Linac Commissioning, 2021. https://agenda.ciemat.es/event/1229/

补充文件

附件文件
动作
1. JATS XML
2.

下载 (958KB)
3.

下载 (577KB)
4.

下载 (3MB)
5.

下载 (129KB)
6.

下载 (105KB)
7.

下载 (1MB)
8.

下载 (1MB)
9.

下载 (609KB)
10.

下载 (336KB)

版权所有 © С.А. Гаврилов, А.И. Титов, 2023

##common.cookie##