Sputtering of Metal Atoms with the Wake Potential Excited by an Electron Beam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The process of metal atoms sputtering during a corona discharge is considered. When an electron moves in a medium at some velocity, charge screening occurs with a delay in space and time, which leads to the emergence of a wake potential. The excited oscillations of the wake charge lead to the appearance of additional forces. The energy loss of a moving particle per unit path is determined by the work produced of the deceleration force that acts on the particle from the side of the wake potential it creates in the medium. The paper considers the effect of the wake potential on the ions (atoms) sputtering of the lattice matrix. A well-known expression is used for the wake potential excited by a charged particle moving with energy, greater than the Fermi energy. An expression for the sputtering cross-section of metal atoms under the action of the wake potential excited by the electron beam is obtained. It is shown that the result of sputtering does not depend on the charge sign of the incident particle (electron or ion).

About the authors

N. P. Kalashnikov

National Research Nuclear University (NRNU MEPhI)

Author for correspondence.
Email: kalash@mephi.ru
Russia, 115409, Moscow

References

  1. Megyeria D., Kohuta A, Geretovszky Z. // J. Aerosol Sci. 2021. V. 154. P. 105758.
  2. Загайнов В.А, Максименко В.В., Калашников Н.П., Аграновский И.Е., Чаусов В.Д., Загайнов Д.К. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 7. С. 27.
  3. Niedbalski J. // Rev. Sci. Instrum. 2003. V. 74. Iss. 7. P. 3520.
  4. Li M.-W., Hu Zh., Wang X.-Zh. et al. // J. Mater. Sci. 2004. V. 39. Iss. 1. P. 283.
  5. Warburg E. // Ueber die Spitzenentladung Wied. Ann. 1899. V. 67. P. 69.
  6. Chang J.-Sh., Lawless P.A., Yamamoto T. // IEEE Transactions Plasma Sci. 1991. V. 19. № 6.
  7. Вартанян Т.А. Основы физики металлических наноструктур. СПб: НИУ ИТМО, 2013. 133 с.
  8. Курнаев В.А., Протасов Ю.С., Цветков И.В. Введение в пучковую электронику. М.: МИФИ, 2008. 452 с.
  9. Goldman M., Goldman A., Sigmond R.S. // Pure Appl. Chem. 1985. V. 57. № 9. P. 1353.
  10. Petrov A.A., Amirov R.H., Samoylov I.S. // IEEE Transactions Plasma Sci. 2009. V. 37. № 7.
  11. Оцуки Е.-Х. Взаимодействие заряженных частиц с твердыми телами. М.: Мир, 1985. 280 с.
  12. Рязанов М.И. Введение в электродинамику конденсированного вещества. М.: Физматлит, 2002. 320 с.
  13. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. Т. VIII. М.: Наука. ГРФМЛ, 1992. 664 с.
  14. Силин В.П., Рухадзе А.А. Электромагнитные свойства плазмы и плазмоподобных сред. М.: ГосАтомиздат, 1961. 244 с.
  15. Neufeld J., Ritchie R.H. // Phys. Rev. 1979. V. 98. P. 1632.
  16. Vager Z., Gemmel D.S. // Phys. Rev. Lett. 1976. V. 37. P. 1352.
  17. Echenique P.M., Ritchie R., Brandt W. // Physical Rev. B. 1976. V. 14. P. 4808.
  18. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. Т. III. М.: Наука. ГРФМЛ, 1989. 768 с.
  19. Киттель Ч. Введение в физику твердого тела. М.: Наука. ГРФМЛ, 1978. 792 с.
  20. Kalashnikov N. Coherent Interactions of Charged Particles in Single Crystals. Scattering and Radiative Processes in Single Crystals. Harwood Academic Publishers, 1988. 328 p.

Copyright (c) 2023 Н.П. Калашников

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies