On the Dynamics of Development and the Results of the Action of Electric Discharge in the Aquatic Environment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of the synthesized nanostructured materials are determined by the methods of their preparation. The combination of electric discharges with liquid is one of the new tools for the synthesis of pure structures but the conditions for obtaining structures play an important role as in the case of traditional synthesis methods. In this work, the electrical and emission characteristics of a low-temperature direct current plasma in contact with water at currents of 0.25 and 0.80 A are studied. The values of the power (energy) of single discharges are calculated. It has been established that this type of discharge burns in a pulsed mode. The value of the discharge current affects the frequency of occurrence of discharges and the energy of an single discharge. It is shown that low-temperature underwater plasma is an effective tool for the synthesis of nanocomposites based on metal oxides, the precursors of which are metal electrodes. The emission spectroscopy method was used to study the emission spectra of underwater plasma. The sputtering of electrodes during plasma combustion, has been established. X-ray phase analysis showed that the phase composition of the obtained products is determined by the strength of the plasma current. The formation of oxides and hydroxides of Ni and Cr with different valencies of metal ions was found.

About the authors

A. V. Khlyustova

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: avlada5577@gmail.com
Russia, 153045, Ivanovo, Academicheskaja st., 1

N. A. Sirotkin

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: avlada5577@gmail.com
Russia, 153045, Ivanovo, Academicheskaja st., 1

A. V. Agafonov

G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: avlada5577@gmail.com
Russia, 153045, Ivanovo, Academicheskaja st., 1

M. A. Stepovich

Tsiolkovsky Kaluga State University

Email: avlada5577@gmail.com
Russia, 248023, Kaluga, Stepan Razin st., 26

M. N. Shipko

Lenin Ivanovo State Power Engineering University

Email: avlada5577@gmail.com
Russia, 153003, Ivanovo, Rabfakovskaya st., 34

References

  1. Lin C.H., Chen S.Y., Shen P. // J. Phys. Chem. C. 2009. V. 113. № 37. P. 16356. https://doi.org/10.1021/jp904288n
  2. Si P.Z., Wang X.L., Xiao X.F., Chen H.J., Liu X.Y., Jiang L., Liu J.J., Jiang Z.W., Ge H.L. // J. Magnetics. 2015. V. 20. № 3. P. 211. https://doi.org/10.4283/JMAG.2015.20.3.211
  3. Farbod M., Shoushtari M.Z. // Ceram. Int. 2017. V. 4. № 16. P. 13670. https://doi.org/10.106/j.ceramint.2017.07.077
  4. Моисеев Н.В., Новиков В.А., Амосов А.П. // Вектор науки Тольяттинского государственного университета. 2019. № 3. С. 15. https://doi.org/10.18323/2073-5073-2019-3-15-22
  5. Новиков В.А., Комзолов А. В., Жадяев А.А. // Вестник Самарского государственного технического университета. Серия: Технические науки. 2017. № 2(54). С. 182.
  6. Novikov V., Xanthopoulou G., Knysh Y., Amosov A.P. // Ceram. Int. 2017. V. 43. № 15. P. 11733. https://doi.org/10.1016/j.ceramint.2017.06.004
  7. Новиков В.А., Фирсова И.А., Моисеев Н.В. // Современные материалы, техника и технологии. 2020. № 2(29). С. 56.
  8. Ushakov A.V., Karpov I.V., Fedorov L.Y., Demin V.G., Goncharova E.A., Shaihadinov A.A., Zeer G.M., Zharkov S.M. // Physica E: Low-Dimensional Systems and Nanostructures. 2020. V. 124. P. 114352. https://doi.org/10.1016/j.physe.2020.114352
  9. Shirai N., Uchida S., Tochikubo F. // Jap. J. Appl. Phys. 2014. V. 53. № 4. P. 046202. https://doi.org/10.7567/JJAP.53.046202
  10. Shutov D.A., Rybkin V.V., Ivanov A.N., Smirnova K.V. // High Energy Chem. 2017. V. 51. № 1. P. 65. https://doi.org/10.1134/S0018143917010118
  11. Shen L., Zhao B., Zhang B., Xu J., Boča M., Shi Z. // Ceram. Int. 2019. V. 45. № 17. P. 23578. https://doi.org/10.1016/j.ceramint.2019.08.068
  12. Agafonov A.V., Sirotkin N.A., Titov V.A., Khlystova A.V. // Russian J. Inorg. Chem. 2022. V. 67. № 3. P. 253. https://doi.org/10.1134/S0036023622030020
  13. Khlyustova A.V., Shipko M.N., Sirotkin N.A., Agafonov A.V., Stepovich M.A. // Bull. RAS: Phys. 2022. V. 86. № 5. P. 509. https://doi.org/S1062873822050100
  14. Khlyustova A., Sirotkin N., Titov V., Agafonov A. // Curr. Appl. Phys. 2020. V. 20. № 12. P. 1396. https://doi.org/10.1016/j.cap.2020.09.012
  15. Machala Z. Janda M., Hensel K., Jedlovský I., Leštinská L., Foltin V., Morvova M. // J. Mol. Spectrosc. 2007. V. 243. № 2. P. 194. https://doi.org/10.1016/j.jms.2007.03.001
  16. Cheung A.C., Gordon R.M., Merer A.J. // J. Mol. Spectrosc. 1981. V. 87. № 1. P. 289. https://doi.org/10.1016/0022-2852(81)90096-5
  17. Smirnov Y.M. // High Temp. 2001. V. 39. № 3. P. 342. https://doi.org/10.1023/A:1017538004490
  18. Smirnov Y.M. // J. Appl. Spectrosc. 2009. V. 76. № 5. P. 611. https://doi.org/10.1007/s10812-009-9262-3
  19. Yu J., Martin B. R., Clearfield A., Luo Z., Sun L. // Nanoscale. 2015. V. 7. № 21. P. 9448. https://doi.org/10.1039/C5NR01077B
  20. Feng X., Li X., Luo H., Su B., Ma J. // J. Solid State Chem. 2022. V. 307. P. 122827. https://doi.org/10.1016/j.jssc.2021.122827

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (975KB)
3.

Download (184KB)
4.

Download (57KB)
5.

Download (136KB)

Copyright (c) 2023 А.В. Хлюстова, Н.А. Сироткин, А.В. Агафонов, М.А. Степович, М.Н. Шипко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies