Influence of Low-Energy Ion Bombardment on the Texture and Microstructure of Pt Films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of low-energy ion bombardment on the texture and microstructure of an 80-nm-thick Pt film deposited at room temperature was investigated. The treatment was carried out in inductively coupled Ar plasma with a negative bias of 45–125 V applied to the specimens and an ion current density of 3.3 mA/cm2. As a result of a series of treatments at each bias, the film was thinned; after each treatment, its structural parameters were determined using X-ray diffraction and compared with those of Pt films 20–60 nm thick deposited under the same conditions. Treatment at 75–125 V led to a decrease in the average size of coherent scattering regions by 10–25%; in the 45 V mode, such a decrease was not observed. These results were explained by the formation and accumulation of radiation defects, the rate of their generation was lower at bias of 45 V. Film sputtering in all modes did not worsen the sharpness of the film texture.

About the authors

R. V. Selyukov

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Author for correspondence.
Email: rvselyukov@mail.ru
Russia, 150007, Yaroslavl

V. V. Naumov

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Email: rvselyukov@mail.ru
Russia, 150007, Yaroslavl

M. O. Izyumov

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Email: rvselyukov@mail.ru
Russia, 150007, Yaroslavl

S. V. Vasilev

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Email: rvselyukov@mail.ru
Russia, 150007, Yaroslavl

L. A. Mazaletskiy

P.G. Demidov Yaroslavl State University

Email: rvselyukov@mail.ru
Russia, 150003, Yaroslavl

References

  1. Van Wyk G.N. // Rad. Eff. Lett. 1981. V. 57. № 6. P. 187. http://doi.org./10.1080/01422448108226518
  2. Popovic N., Milic M., Bogdanov Z., Petrovic R. // Vacuum. 1990. V. 40. № 1–2. P. 149. http://doi.org./10.1016/0042-207X(90)90142-L
  3. Dobrev D. // Thin Solid Films. 1982. V. 92. № 1–2. P. 41. http://doi.org./10.1016/0040-6090(82)90186-9
  4. Marinov M., Dobrev D. // Thin Solid Films. 1977. V. 42. № 3. P. 265. http://doi.org./10.1016/0040-6090(77)90361-3
  5. Fu E.G., Wang Y.Q., Zou G.F., Xiong J., Zhuo M.J., Wei Q.M., Baldwin J.K., Jia Q.X., Shao L., Misra A., Nastasi M. // Appl. Phys. A. 2012. V. 108. № 1. P. 121. http://doi.org./10.1007/s00339-012-6865-y
  6. Fu E.G., Wang Y.Q., Nastasi M. // J. Phys. D. 2012. V. 45. № 49. P. 495303. http://doi.org./10.1088/0022-3727/45/49/495303
  7. Olliges S., Gruber P., Bardill A., Ehrler D., Carstanjen H.D., Spolenak R. // Acta Mater. 2006. V. 54. № 20. P. 5393. http://doi.org./10.1016/j.actamat.2006.07.005
  8. Li J., Liu J.C., Mayer J.W. // Nucl. Instrum. Methods Phys. Res. B. 1989. V. 36. № 3. P. 306. http://doi.org./10.1016/0168-583X(89)90672-1
  9. Liu J.C., Li J., Mayer J.W. // J. Appl. Phys. 1990. V. 67. № 5. P. 2354. http://doi.org./10.1063/1.345530
  10. Liu J.C., Nastasi M., Mayer J.W. // J. Appl. Phys. 1987. V. 62. № 2. P. 423. http://doi.org./10.1063/1.339815
  11. Kaoumi D., Motta A.T., Birtcher R.C. // J. ASTM Int. 2007. V. 4. № 8. P. JAI100743. http://doi.org./10.1520/JAI100743
  12. Blazhevich S., Kamyshanchenko N., Martynov I., Neklyudov I. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 193. № 1–4. P. 312. http://doi.org./10.1016/S0168-583X(02)00797-8
  13. Atwater H.A., Thompson C.V., Smith H.I. // J. Appl. Phys. 1988. V. 64. № 5. P. 2337. http://doi.org./10.1063/1.341665
  14. Lilienfeld D.A., Borgesen P., Meyer P. // Mat. Res. Soc. Symp. Proc. 1991. V. 235. P. 571. http://doi.org./10.1557/PROC-235-571
  15. Hasegawa Y., Fujimoto Y., Okuyama F. // Surf. Sci. Lett. 1985. V. 163. № 2–3. P. L781. http://doi.org./10.1016/0167-2584(85)90883-7
  16. Naeem M.D., Rossnagel S.M., Rajan K. // Mat. Res. Soc. Symp. Proc. 1994. V. 343. P. 113. http://doi.org./10.1557/PROC-343-113
  17. Naeem M.D., Leary H.J., Rajan K. // J. Electron. Mater. 1992. V. 21. № 12. P. 1087. http://doi.org./10.1007/BF02667598
  18. Chan W.-L., Zhao K., Vo N., Ashkenazy Y., Cahill D.G., Averback R.S. // Phys. Rev. B. 2008. V. 77. № 20. P. 205405. http://doi.org./10.1103/PhysRevB.77.205405
  19. Mayr S.G., Averback R.S. // Phys. Rev. B. 2003. V. 68. № 21. P. 214105. http://doi.org./10.1103/PhysRevB.68.214105
  20. Misra A., Fayeulle S., Kung H., Mitchell T.E., Nastasi M. // J. Nucl. Instrum. Methods Phys. Res. B. 1999. V. 148. № 1–4. P. 211. http://doi.org./10.1016/S0168-583X(98)00780-0
  21. Наумов В.В., Бочкарев В.Ф., Трушин О.С., Горячев А.А., Хасанов Э.Г., Лебедев А.А., Куницын А.С. // ЖТФ. 2001. Т. 71. № 8. С. 92.
  22. Бабушкин А.С., Уваров И.В., Амиров И.И. // ЖТФ. 2018. Т. 88. № 12. С. 1845. http://doi.org./10.21883/JTF.2018.12.46786.37-18
  23. Babushkin A., Selyukov R., Amirov I. // Proc. SPIE. 2019. V. 11022. P. 1102223. http://doi.org./10.1117/12.2521617
  24. Silva J.P.B., Sekhar K.C., Almeida A., Agostinho Moreira J., Martin-Sanchez J., Pereira M., Khodorov A., Gomes J.M. // J. Appl. Phys. 2012. V. 112. № 4. P. 044105. http://doi.org./10.1063/1.4748288
  25. Воротилов К.А., Жигалина О.М., Васильев В.А., Сигов А.С. // ФТТ. 2009. Т. 51. № 7. С. 1268.
  26. Mirica E., Kowach G., Evans P., Du H. // Cryst. Growth Des. 2004. V. 4. № 1. P. 147. http://doi.org./10.1021/cg025595j
  27. Амиров И.И., Изюмов М.О., Наумов В.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 8. С. 82. http://doi.org./10.7868/S0207352816080047
  28. Kuru Y., Welzel U., Mittemeijer E.J. // Appl. Phys. Lett. 2014. V. 105. № 22. P. 221902. http://doi.org./10.1063/1.4902940
  29. Abbas K., Alaie S., Ghasemi-Baboly M., Elahi M.M.M., Anjum D.H., Chaieb S., Leseman Z.C. // J. Micromech. Microeng. 2016. V. 26. P. 015007. http://doi.org./10.1088/0960-1317/26/1/015007
  30. Thompson C.V. // Annu. Rev. Mater. Sci. 2000. V. 30. P. 159. http://doi.org./10.1146/annurev.matsci.30.1.159
  31. Sweeney Jr.W.E., Seebold R.E., Birks L.S. // J. Appl. Phys. 1960. V. 31. № 6. P. 1061. http://doi.org./10.1063/1.1735746
  32. Уманский Я.С., Скаков Ю.А., Иванов А.Н., Расторгуев Л.Н. // Кристаллография, рентгенография и электронная микроскопия. М.: Металлургия, 1982. С. 351.
  33. Селюков Р.В., Наумов В.В., Васильев С.В. // ЖТФ. 2018. Т. 88. № 6. С. 926. http://doi.org./10.21883/JTF.2018.06.46027.2526 4
  34. Palumbo G., Thorne S.J., Aust K.T. // Scr. Metall. Mater. 1990. V. 24. № 7. P. 1347. http://doi.org./10.1016/0956-716X(90)90354-J
  35. Yamasaki T. // Scr. Mater. 2001. V. 44. № 8–9. P. 1497. http://doi.org./10.1016/S1359-6462(01)00720-5
  36. Roebben G., Sarbu C., Lubec T., Van der Biest O. // Mat. Sci. Eng. A. 2004. V. 370. № 1–2. P. 453. http://doi.org./10.1016/j.msea.2003.05.004
  37. Cullity B.D. // Elements of X-ray Diffraction. Addison–Wesley Publishing Company, Inc., 1956. P. 388.
  38. Malek M.F., Mamat M.H., Khusaimi Z., Sahdan M.Z., Musa M.Z., Zainun A.R., Suriani A.B., Md Sin N.D., Abd Hamid S.B., Rusop M. // J. Alloys Compd. 2014. V. 582. № 5. P. 12. http://doi.org./10.1016/j.jallcom.2013.07.202
  39. Ho M.-Y., Gong H., Wilk G.D., Busch B.W., Green M.L., Voyles P.M., Muller D.A., Bude M., Lin W.H., See A., Loomans M.E., Lahiri S.K., Raisanen P.I. // J. Appl. Phys. 2003. V. 93. № 3. P. 1477. http://doi.org./10.1063/1.1534381
  40. Heiroth S., Frison R., Rupp J.L.M., Lippert T., Meier E.J.B., Gubler E.M., Dobeli M., Conder K., Wokaun A., Gauckler L.J. // Solid State Ionics. 2011. V. 191. № 1. P. 12. http://doi.org./10.1016/j.ssi.2011.04.002
  41. Труды ФТИАН. Т. 28: Квантовые компьютеры, микро- и наноэлектроника: физика, технология, диагностика и моделирование / Ред. Махвиладзе Т.М. М.: Наука, 2019. С. 131.
  42. Jeffries J.H., Zuo J.-K., Craig M.M. // Phys. Rev. Lett. 1996. V. 76. № 26. P. 4931. http://doi.org./10.1103/PhysRevLett.76.4931
  43. Ogilvie G.J. // J. Phys. Chem. Solids. 1959. V. 10. № 2–3. P. 222. http://doi.org./10.1016/0022-3697(59)90079-4
  44. Ogilvie G.J., Thompson A.A. // J. Phys. Chem. Solids. 1961. V. 17. № 3–4. P. 203. http://doi.org./10.1016/0022-3697(61)90184-6
  45. Balaji S., Satyam P.V., Lakshminarayanan V., Mohan S. // Nucl. Instrum. Methods Phys. Res. B. 2004. V. 217. № 3. P. 423. http://doi.org./10.1016/j.nimb.2003.11.080

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (124KB)
3.

Download (129KB)
4.

Download (75KB)
5.

Download (133KB)

Copyright (c) 2023 Р.В. Селюков, В.В. Наумов, М.О. Изюмов, С.В. Васильев, Л.А. Мазалецкий

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies