Theoretical Study of Charge Transfer between a Metal Surface and a Hydrogen Atom in the Excited p-State

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Some features of the charge transfer between ions and the metal surface, which are due to its atomic structure, were numerically investigated. The simulation was based on a three-dimensional implementation of the wave packet propagation method. The studied system consisted of an Al(110) metal surface and an excited hydrogen atom with an electron in the p-state, which does not have spherical symmetry. When considering a model static problem, it was shown that electron exchange is more efficient when the symmetry axis of the p-orbital was oriented perpendicular to the Al surface, rather than parallel. Also, analysis of the obtained data showed that the time dependence of the atomic population function has an exponential decay. The solution of the “dynamic” problem showed that for an excited hydrogen atom moving along the metal surface, the electron exchange does not depend on the orientation of the p-orbital symmetry axis with respect to the direction of motion of the atom. The study of the dynamics of the charge transfer with a metal surface made it possible to observe for p-orbitals, the symmetry axis of which was directed parallel to the metal surface, the separation of the electron density passing to the surface into two parts, which diverge relative to the p-orbital symmetry plane.

Авторлар туралы

S. Moskalenko

Moscow State University

Email: ivan.gainullin@physics.msu.ru
Russia, 119992, Moscow

I. Gainullin

Moscow State University

Хат алмасуға жауапты Автор.
Email: ivan.gainullin@physics.msu.ru
Russia, 119992, Moscow

Әдебиет тізімі

  1. Hutchings G.J., Haruta M. // Appl. Catal. A. 2005. V. 291. P. 2. https://www.doi.org/10.1016/j.apcata.2005.05.044
  2. Lai X., Clair T.P.St., Valden M., Goodman D.W. // Prog. Surf. Sci. 1998. V. 59. P. 25. https://www.doi.org/10.1016/S0079-6816(98)00034-3
  3. Lai X., Clair T.P.St., Goodman D.W. // Faraday Discuss. 1999. V. 114. P. 279. https://www.doi.org/10.1039/A902795E
  4. Bacal M., Wada M. // Appl. Phys. Rev. 2015. V. 2. P. 021305. https://www.doi.org/10.1063/1.4921298
  5. Gainullin I.K. // Surf. Sci. 2018. V. 677. P. 324. https://www.doi.org/10.1016/j.susc.2018.08.007
  6. Usman E.Yu., Urazgil’din I.F., Borisov A.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405. https://www.doi.org/10.1103/PhysRevB.64.205405
  7. Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865. https://www.doi.org/10.1134/S1027451009060032
  8. Magunov A.A., Shestakov D.K., Gainullin I.K., Urazgil’din I.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2008. V. 2. P. 764. https://www.doi.org/10.1134/S1027451008050170
  9. Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2003. V. 72. P. 263. https://www.doi.org/10.1016/j.vacuum.2003.07.001
  10. Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877. https://www.doi.org/10.1134/S102745101211016X
  11. Klavsyuk A.L., Kolesnikov S.V., Gainullin I.K., Saletsky A.M. // Eur. Phys. J. B. 2012. V. 85. P. 331. https://www.doi.org/10.1140/epjb/e2012-30352-3
  12. Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737. https://www.doi.org/10.1016/j.tsf.2011.01.026
  13. Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87. P. 022903. https://www.doi.org/10.1103/PhysRevA.87.022903
  14. Bryukvina L.I., Lipko S.V., Martynovich E.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2013. V. 7. № 4. P. 617. https://www.doi.org/10.1134/S1027451013040071
  15. Stueckelberg E.C.G. // Helvetica Physica Acta. 1932. V. 5. P. 369.
  16. Gainullin I.K. // UFN. 2020. V. 63. P. 888. https://www.doi.org/10.3367/UFNe.2019.11.038691.
  17. Yin C., Guo Z., Gellman A.J. // J. Phys. Chem. C. 2020. V. 124. P. 10605. https://www.doi.org/10.1021/acs.jpcc.0c02058
  18. Bruckner B., Bauer P., Primetzhofer D. // Surf. Sci. 2020. V. 691. P. 121491. https://www.doi.org/10.1016/j.susc.2019.121491
  19. Oohara W., Kaji T., Hirose K. et al. // AIP Advances. 2020. V. 10. P. 095006. https://www.doi.org/10.1063/5.0020697
  20. Oohara W., Fujii M., Watai M., Hiraoka Y., Egawa M., Morinaga Y., Takamori S., Yoshida M. // AIP Advances. 2019. V. 9. P. 085303. https://www.doi.org/10.1063/1.5109805
  21. Gao L., Zhu Y., Shi Y., Liu P., Xiao Y., Li G., Liu Y., Esaulov V.A., Chen X., Chen L., Guo Y. // Phys. Rev. A. 2017. V. 96. P. 052705. https://www.doi.org/10.1103/PhysRevA.96.052705
  22. Shaw J., Zhang Y., Doerr D., Chakraborty H., Monismith D. // Phys. Rev. A. 2019. V. 98. P. 052705. https://www.doi.org/10.1103/PhysRevA.98.052705
  23. Shaw J., Monismith D., Zhang Y., Doerr D., Chakra- borty H.S. // Atoms. 2020. V. 7. P. 89. https://www.doi.org/10.3390/atoms7030089
  24. Iglesias-García A., Romero M.A., García E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. P. 115406. https://www.doi.org/10.1103/PhysRevB.102.115406
  25. Liu J. et al. // Phys. Rev. A. 2020. V. 101. P. 032706. https://www.doi.org/10.1103/PhysRevA.101.032706
  26. Xiao Y., Shi Y., Liu P., Zhu Y., Gao L., Guo Y., Chen L., Chen X., Esaulov V. // Nucl. Instum. Methods. Phys. Res. B. 2019. V. 450. P. 73. https://www.doi.org/10.1016/j.nimb.2018.11.022
  27. Mamedov N.V., Mamedov I.M. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84 P. 713. https://www.doi.org/10.3103/S1062873820060155
  28. Balakshin Y.V., Kozhemiako A.V., Evseev A.P., Minnebaev D.K., Elsehly E.M. // Moscow University Phys. Bull. 2020. V. 75. P. 218. https://www.doi.org/10.3103/S0027134920030030
  29. Shemukhin A.A., Smirnov A.M., Evseev A.P., Vorobyeva E.A., Kozhemiako A.V., Minnebaev D.K., Balakshin Y.V., Nazarov A.V., Chernysh V.S. // Moscow University Phys. Bull. 2020. V. 75. P. 133. https://www.doi.org/10.3103/S0027134920020113
  30. Sereda I., Tseluyko A., Ryabchikov D., Hrechko Y., Azarenkov N. // Vacuum. 2019. V. 162. P. 163. https://www.doi.org/10.1016/j.vacuum.2019.01.046
  31. Aleksandrov A.F., Gainullin I.K., Sonkin M.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech.2020. V. 14. P. 791. https://www.doi.org/10.1134/S1027451020040205
  32. Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585. https://www.doi.org/10.3103/S0027134919060158
  33. Majorosi S., Czirják A. // Comp. Phys. Comm. 2016. V. 208. P. 9. https://www.doi.org/10.1016/j.cpc.2016.07.006
  34. Fu Y., Zeng J., Yuan J. // Comp. Phys. Comm. 2017. V. 210. P. 181. https://www.doi.org/10.1016/j.cpc.2016.09.016
  35. Lüdde H.J., Horbatsch M., Kirchner T. // Eur. Phys. J. B. 2018. V. 91. P. 99. https://www.doi.org/10.1140/epjb/e2018-90165-x
  36. Zhou S.P., Liu A.H., Liu F.C., Wang C.C., Ding D.J. // Chinese Phys. B. 2019. V. 28. P. 083101. https://www.doi.org/10.1088/1674-1056/28/8/083101
  37. Liu Q., Liu F., Hou C. // Procedia Computer Sci. 2020. V. 171. P. 312. https://www.doi.org/10.1016/j.procs.2020.04.032
  38. Gainullin I.K., Klavsyuk A.L. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 542. https://www.doi.org/10.3103/S1062873812050115
  39. Riascos V.Q. et al. // Phys. Rev. A. 2021. V. 103. № 6. P. 062805. https://www.doi.org/10.1103/PhysRevA.103.062805
  40. Fu-Ming T. et al. // Acta Physica Sinica. 2020. V. 69. № 23. P. 234202. https://www.doi.org/10.7498/aps.69.20200700
  41. Wang L., Sun G., Liu X. et al. // Nucl. Instrum. Methods. Phys. Res. B. 2021. V. 497. P. 10. https://www.doi.org/10.1016/j.nimb.2021.03.022
  42. Salvo C., Karmakar P., Yarmoff J. // Phys. Rev. B. 2018. V. 98. P. 035437. https://www.doi.org/10.1103/PhysRevB.98.035437
  43. Urazgil’din I.F. // Phys. Rev. B. 1993. V. 47. P. 4139. https://www.doi.org/10.1103/PhysRevB.47.4139
  44. Tolstogouzov A., Daolio S., Pagura C. // Surf. Sci. 1999. V. 441. P. 213. https://www.doi.org/10.1016/S0039-6028(99)00881-X
  45. Elovikov S.S., Zykova E.Yu., Mosunov A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2002. V. 66. P. 558.
  46. Mashkova E.S. // Nucl. Instrum. Methods. Phys. Res. B. 2003. V. 212. P. 164.
  47. Zinoviev A.N., Babenko P.Y., Meluzova D.S., Shergin A.P. // JETP Letters. 2018. V. 108. P. 633.
  48. Brongersma H.H., Draxler M., de Ridder M., Bauer P. // Surf. Sci. 2007. V. 62. P. 63.
  49. He X., Zhou W., Wang Z.Y., Zhang Y.N., Shi J., Wu R.Q., Yarmoff J.A. // Phys. Rev. Lett. 2013. V. 110. P. 156101.
  50. Souda R., Ayzawa T., Hayami W., Otani S., Ishizawa Y. // Phys. Rev. B. 1990. V. 42. P. 7761. https://www.doi.org/10.1103/PhysRevB.42.7761
  51. Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2004. V. 72. P. 263.
  52. Gainullin I.K., Usman E.Y., Urazgil’din I.F. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 232. P. 22.
  53. Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. № 20. P. 205403.
  54. Shestakov D.K., Polivnikova T.Yu., Gainullin I.K., Urazgildin I.F. // Nuclear Instrum. Methods Phys. Res. B. 2009. V. 267. P. 2596.
  55. Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158.
  56. Гайнуллин И.К. // Вестник МГУ. Серия 3. Физика. Астрономия. 2019. №. 5. С. 67.
  57. Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712.
  58. Гайнуллин И.К. // Успехи физических наук. Т. 190. С. 950. https://www.doi.org/10.3367/UFNr.2019.11.038691.
  59. Martynenko Yu.V. // Rad. Eff. Defects. Solids. 1973. V. 20. P. 211.
  60. Winter H. // Phys. Rep. 2002. V. 367. P. 387.
  61. Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
  62. Canario A.R. et al. // Phys. Rev. B. 2005. V. 71. № 12. P. 121401.
  63. Ermoshin V.A., Kazansky A.K. // Phys. Lett. A. 1996. V. 218. P. 99.
  64. Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710.
  65. Gainullin I.K., Sonkin M.A. // Computer Phys. Commun. 2015. V. 188. P. 68.
  66. Gainullin I.K. // Computer Phys. Commun. 2017. V. 210. P. 72.
  67. Gainullin I.K. // Phys. Rev. A. 2017. V. 95. № 5. P. 052705.
  68. Jennings P.J., Jones R.O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.
  69. Chulkov E.V., Silkin V.M., Echenique P.M. // Surf. Sci. 1999. V. 437. P. 330.

© С.С. Москаленко, И.К. Гайнуллин, 2022

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>