Modeling of the Influence of Temperature on the Emission Properties of a Cathode with a Thin Insulating Film in a Glow Gas Discharge and the Discharge Voltage–Current Characteristic

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A model of glow gas discharge in the presence of a thin insulating film on the cathode is formulated. It takes into account that under discharge current flow, due to the bombardment of the cathode by ions, positive charges accumulate on the film and generate strong electric field in it. As a result, field emission of electrons from the cathode metal substrate into the film starts, which, with an increase in its temperature, transforms into thermal-field emission. Electrons move in the film, being accelerated by the electric field and decelerated in collisions with phonons, and some of them leave the film into the discharge, increasing the effective ion-electron emission yield of the cathode. The electric field strength in the film is determined from the condition that the density of the discharge current and the density of the emission current from the cathode metal substrate into the film are equal. The dependences of the film emission efficiency, the effective ion-electron emission yield of the cathode, and the discharge characteristics on the cathode temperature are calculated. It is shown that already at a temperature exceeding room temperature by several hundred degrees, the temperature enhancement of field electron emission from the metal substrate into the film can noticeably influence the cathode emission properties and the discharge voltage-current characteristic.

Sobre autores

G. Bondarenko

National Research University Higher School of Economics

Autor responsável pela correspondência
Email: gbondarenko@hse.ru
Russia, 101000, Moscow

V. Kristya

Bauman Moscow State Technical University, Kaluga Branch

Autor responsável pela correspondência
Email: kristya@bmstu.ru
Russia, 248000, Kaluga

M. Fisher

Bauman Moscow State Technical University, Kaluga Branch

Autor responsável pela correspondência
Email: fishermr@bmstu.ru
Russia, 248000, Kaluga

Bibliografia

  1. Райзер Ю.П. Физика газового разряда. Долгопрудный: ИД “Интеллект”, 2009. 736 с.
  2. Кудрявцев А.А., Смирнов А.С., Цендин Л.Д. Физика тлеющего разряда. С.-Пб.: Лань, 2010. 512 с.
  3. Byszewski W.W., Li Y.M., Budinger A.B., Gregor P.D. // Plasma Sources Sci. Technol. 1996. V. 5. № 4. P. 720. https://www.doi.org./10.1088/0963-0252/5/4/014
  4. Hadrath S., Beck M., Garner R.C., Lieder G., Ehlbeck J. // J. Phys. D. 2007. V. 40. № 1. P. 163. https://www.doi.org./10.1088/0022-3727/40/1/009
  5. Murphy E.L., Good R.H. // Phys. Rev. 1956. V. 102. № 6. P. 1464. https://doi.org./10.1103/PhysRev.102.1464
  6. Modinos A. Field, Thermionic, and Secondary Electron Emission Spectroscopy. N.Y.: Springer Science, 1984. 376 p.
  7. Ptitsin V.E. // J. Phys.: Conf. Ser. 2011. V. 291. P. 012019. https://www.doi.org./10.1088/1742-6596/291/1/012019
  8. Radmilović-Radjenović M., Radjenović B. // Plasma Sources Sci. Technol. 2008. V. 17. № 2. P. 024005. https://www.doi.org./10.1088/0963-0252/17/2/024005
  9. Venkattraman A. // Appl. Phys. Lett. 2014. V. 104. № 19. P. 194101. https://www.doi.org./10.1063/1.4876606
  10. Haase J.R., Go D.B. // // J. Phys. D. 2016. V. 49. № 5. P. 055206. https://www.doi.org./10.1088/0022-3727/49/5/055206
  11. Benilov M.S., Benilova L.G. // J. Appl. Phys. 2013. V. 114. № 6. 063307. https://www.doi.org./10.1063/1.4818325
  12. Riedel M., Düsterhöft H., Nagel F. // Vacuum. 2001. V. 61. № 2–4. P. 169. https://www.doi.org./10.1016/S0042-207X(01)00112-9
  13. Bondarenko G.G., Fisher M.R., Kristya V.I., Prassitski V.V. // Vacuum. 2004. V. 73. P. 155. https://www.doi.org./10.1016/j.vacuum.2003.12.004
  14. Hadrath S., Ehlbeck J., Lieder G., Sigeneger F. // J. Phys. D. 2005. V. 38. № 17. P. 3285. https://www.doi.org./10.1088/0022-3727/38/17/S33
  15. Suzuki M., Sagawa M., Kusunoki T., Nishimura E., Ikeda M., Tsuji K. // IEEE Trans. Electron Devices. 2012. V. 59. № 8. P. 2256. https://www.doi.org./10.1109/TED.2012.2197625
  16. Bondarenko G.G., Fisher M.R., Kristya V.I. // Vacuum. 2016. V. 129. P. 188. https://www.doi.org./10.1016/j.vacuum.2016.01.008
  17. Doughty D.K., Den Hartog E.A., Lawler J.E. // Appl. Phys. Lett. 1985. V. 46. № 4. P. 352. https://www.doi.org./10.1063/1.95628
  18. Jensen K.L. // J. Appl. Phys. 2007. V. 102. № 2. P. 024911. https://www.doi.org./10.1063/1.2752122
  19. Dionne M., Coulombe S., Meunier J.-L. // J. Phys. D. 2008. V. 41. № 24. P. 245304. https://www.doi.org./10.1088/0022-3727/41/24/245304
  20. Егоров Н.В., Шешин Е.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 3. С. 5. https://www.doi.org./10.7868/S0207352817030088
  21. Holgate J.T., Coppins M. // Phys. Rev. Appl. 2017. V. 7. № 4. P. 044019. https://www.doi.org./10.1103/PhysRevApplied.7.044019
  22. Jensen K.L. // J. Appl. Phys. 2019. V. 126. № 6. P. 065302. https://doi.org/10.1063/1.5109676
  23. Bondarenko G.G., Kristya V.I., Savichkin D.O. // Vacuum. 2018. V. 149. P. 114. https://www.doi.org./10.1016/j.vacuum.2017.12.028
  24. Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. №. 6. С. 846. https://www.doi.org./10.31857/S0367676520060149
  25. Phelps A.V., Petrović Z.Lj. // Plasma Sources Sci. Technol. 1999. V. 8. № 3. P. R21. https://www.doi.org./10.1088/0963-0252/8/3/201
  26. Forbes R.G. // Solid-State Electronics. 2001. V. 45. № 6. P. 779. https://www.doi.org./10.1016/S0038-1101(00)00208-2
  27. Rumbach P., Go D.B. // J. Appl. Phys. 2012. V. 112. № 10. P. 103302. https://www.doi.org./10.1063/1.4764344
  28. Бондаренко Г.Г., Фишер М.Р., Мьо Ти Ха, Кристя В.И. // Изв. вузов. Физика. 2019. Т. 62. № 1. С. 72.
  29. Kusunoki T., Sagawa M., Suzuki M., Ishizaka A., Tsuji K. // IEEE Trans. Electron Devices. 2002. V. 49. № 6. P. 1059. https://www.doi.org./10.1109/TED.2002.1003743
  30. Bondarenko G.G., Fisher M.R., Kristya V.I., Bondariev V. // High Temp. Material Proc. 2022. V. 26. № 1. P. 17. https://www.doi.org./10.1615/HighTempMatProc. 2021041820
  31. Кристя В.И., Мьо Ти Ха // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 5. С. 63. https://www.doi.org./10.31857/S1028096020030103
  32. Arkhipenko V.I., Kirillov A.A., Safronau Y.A., Simonchik L.V., Zgirouski S.M. // Plasma Sources Sci. Technol. 2009. V. 18. № 4. P. 045013. https://www.doi.org./10.1088/0963-0252/18/4/045013
  33. Кристя В.И., Фишер М.Р. // Изв. РАН. Сер. физ. 2012. Т. 76. № 5. С. 673.
  34. Кристя В.И., Йе Наинг Тун // Изв. РАН. Сер. физ. 2014. Т. 78. № 6. С. 752. https://www.doi.org./10.7868/S0367676514060179
  35. Крютченко О.Н., Маннанов А.Ф., Носов А.А., Степанов В.А., Чиркин М.В. // Поверхность. Физика, химия, механика. 1994. № 6. С. 93.
  36. Forbes R.G. // Appl. Phys. Lett. 2006. V. 89. № 11. P. 113122. https://www.doi.org./10.1063/1.2354582
  37. Зыкова Е.В., Кучеренко Е.Т., Айвазов В.Я. // Радиотехника и электроника. 1979. Т. 24. № 7. С. 1464.
  38. Rózsa K., Gallagher A., Donkó Z. // Phys. Rev. E. 1995. V. 52. № 1. P. 913. https://www.doi.org./10.1103/PhysRevE.52.913

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (160KB)
3.

Baixar (99KB)

Declaração de direitos autorais © Г.Г. Бондаренко, В.И. Кристя, М.Р. Фишер, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies