АСТРОЦИТЫ И ПЛАСТИЧНОСТЬ СИНАПСОВ. ЧАСТЬ II. ВНЕКЛЕТОЧНЫЙ МАТРИКС И ПЕРИНЕЙРОНАЛЬНАЯ СЕТЬ


Цитировать

Полный текст

Аннотация

Рассмотрено участие астроцитов в образовании внеклеточного матрикса (ВКМ) ЦНС, значение ВКМ и его специализированной формы, перинейрональной сети, в синаптогенезе и пластичности синапсов в зрелом мозге. В аспекте понимания механизмов шизофрении приведены данные об элиминации и пластичности синапсов, роли молекул комплемента и некоторых генов риска, которые экспрессируются астроцитами и влияют на синаптогенез и функцию синапсов.

Об авторах

Вадим Николаевич Швалев

Национальный медицинский исследовательский центр кардиологии

Email: vadim.shvalev@mail.ru
121552, г. Москва, 3-я Черепковская, д. 15А

Александр Алексеевич Сосунов

Колумбийский университет

Email: aas190@cumc.columbia.edu
Нью-Йорк, 10032, США

Юрий Александрович Челышев

Казанский государственный медицинский университет

Email: chelyshev-kzn@yandex.ru
420012, г. Казань, ул. Бутлерова, д. 49

Список литературы

  1. Baroncelli L., Scali M., Sansevero G. et al. Experience affects critical period plasticity in the visual cortex through an epigenetic regulation of histone post-translational modifications // J Neurosci. 2016. Vol. 36, № 12. P. 3430-3440.
  2. Bartoletti A., Medini P., Berardi N., Maffei L. Environmental enrichment prevents effects of dark-rearing in the rat visual cortex // Nat Neurosci. 2004. Vol. 7, № 3. P. 215-216.
  3. Blumcke I., Thom M., Aronica E. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods // Epilepsia. 2013. Vol. 54, № 7. P. 1315-1329.
  4. Brakebusch C., Seidenbecher C.I., Asztely F. et al. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory // Mol Cell Biol. 2002. Vol. 22. P. 7417-7427.
  5. Brandon N.J., Millar J.K., Korth C. et al. Understanding the role of DISC1 in psychiatric disease and during normal development // J Neurosci. 2009. Vol.29. P. 12768-12775.
  6. Carstens K.E., Phillips M.L., Pozzo-Miller L. et al. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons // J Neurosci. 2016. Vol. 36, № 23. P. 6312-6320.
  7. Carulli D., Pizzorusso T., Kwok J.C. et al. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity // Brain. 2010. Vol. 133, № 8. P. 2331-2347.
  8. Chen N., Bao Y., Xue Y. et al. Meta-analyses of RELN variants in neuropsychiatric disorders // Behav Brain Res. 2017. Vol. 332. P. 110-119.
  9. Czipri M., Otto J.M., Cs-Szabo G. et al. Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency // J Biol Chem. 2003. Vol. 278, № 40. P. 39214-39223.
  10. Dauth S., Grevesse T., Pantazopoulos H. et al. Extracellular matrix protein expression is brain region dependent // J Comp Neurol. 2016. Vol. 524, № 7. P. 1309-1336.
  11. Deepa S.S., Carulli D., Galtrey C. et al. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans // J Biol Chem. 2006. Vol. 281, № 26. P. 17789-17800.
  12. Dudek S.M., Alexander G.M., Farris S. Rediscovering area CA2: unique properties and functions // Nat Rev Neurosci. 2016. Vol. 17, № 2. P. 89-102.
  13. Ebrahimi M., Yamamoto Y., Sharifi K. et al. Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons // Glia. 2016. Vol. 64. P. 48-62.
  14. Escudero-Esparza A., Kalchishkova N., Kurbasic E. et al. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly // FASEB J. 2013. Vol. 27. P. 5083-5093.
  15. Fagiolini M., Hensch T.K. Inhibitory threshold for critical-period activation in primary visual cortex // Nature. 2000. Vol. 404, № 6774. P. 183-186.
  16. Favuzzi E., Marques-Smith A., Deogracias R. et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican // Neuron. 2017. Vol. 95. P. 639-655.
  17. Fisher D., Xing B., Dill J. et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors // J Neurosci. 2011. Vol. 31(40). P. 14051-14066.
  18. Fowke T.M., Karunasinghe R.N., Bai J.Z. et al. Hyaluronan synthesis by developing cortical neurons in vitro // Sci Rep. 2017. Vol. 7. P. 44135.
  19. Frischknecht R., Heine M., Perrais D. et al. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity // Nat Neurosci. 2009. Vol. 12. P. 897-904.
  20. Gasque P., Dean Y.D., McGreal E.P. et al. Complement components of the innate immune system in health and disease in the CNS // Immunopharmacology. 2000. Vol. 49. P. 171-186.
  21. Gogolla N., Caroni P., Luthi A., Herry C. Perineuronal nets protect fear memories from erasure. Science. 2009. Vol. 325, № 5945. P. 1258-1261.
  22. Gurevicius K., Kuang.F, Stoenica L. et al. Genetic ablation of tenascin-C expression leads to abnormal hippocampal CA1 structure and electrical activity in vivo // Hippocampus. 2009. Vol. 19. P. 1232-1246.
  23. Harauzov A., Spolidoro M., DiCristo G. et al. Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity // J Neurosci. 2010. Vol. 30, № 1. P. 361-371.
  24. Hardingham G.E., Do K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis // Nat Rev Neurosci. 2016. Vol. 17. P. 125-134.
  25. Irintchev A., Rollenhagen A., Troncoso E. et al. Structural and functional aberrations in the cerebral cortex of tenascin-C deficient mice // Cereb Cortex. 2005. Vol. 15. P. 950-962.
  26. Kim R., Sepulveda-Orengo M.T., Healey K.L. et al. Regulation of glutamate transporter 1 (GLT-1) gene expression by cocaine self-administration and withdrawal // Neuropharmacology. 2018. Vol. 128. P. 1-10.
  27. Kochlamazashvili G., Henneberger C., Bukalo O. et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic L-type Ca(2+) channels // Neuron. 2010. Vol. 67. P. 116-128.
  28. Kolluri N., Sun Z., Sampson A.R., Lewis D.A. Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia // Am J Psychiatry. 2005. Vol. 162. P. 1200-1202.
  29. Lensjo K.K., Christensen A.C., Tennoe S. et al. Differential expression and cell-type specificity of perineuronal nets in hippocampus, medial entorhinal cortex, and visual cortex examined in the rat and mouse // eNeuro. 2017. Vol. 4. P. 3.
  30. Lensjo K.K., Lepperod M.E., Dick G. et al. Removal of perineuronal nets unlocks juvenile plasticity through network mechanisms of decreased inhibition and increased gamma activity // J Neurosci. 2017. Vol. 37, № 5. P. 1269-1283.
  31. Mayilyan K.R., Weinberger D.R., Sim R.B. The complement system in schizophrenia // Drug News Perspect. 2008. Vol. 21. P. 200-210.
  32. Morawski M., Reinert T., Meyer-Klaucke W. et al. Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties // Sci Rep. 2015. Vol. 5. P. 16471.
  33. Morellini F., Sivukhina E., Stoenica L. et al. Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus // Cereb Cortex. 2010. Vol. 20. P. 2712-2727.
  34. Nicholson C., Sykova E. Extracellular space structure revealed by diffusion analysis // Trends Neurosci. 1998. Vol. 21, № 5. P. 207-215.
  35. Pantazopoulos H., Woo T.U., Lim M.P. et al. Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia // Arch Gen Psychiatry. 2010. Vol. 67. P. 155-166.
  36. Pizzorusso T., Medini P., Berardi N. et al. Reactivation of ocular dominance plasticity in the adult visual cortex // Science. 2002. Vol. 298, № 5596. P. 1248-1251.
  37. Romberg C., Yang S., Melani R. et al. Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex // J Neurosci. 2013. Vol. 33. 7057-7065.
  38. Selemon L.D., Zecevic N. Schizophrenia: a tale of two critical periods for prefrontal cortical development // Transl Psychiatry. 2015. Vol. 5. e623.
  39. Shen Y., Tenney A.P., Busch S.A. et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration // Science. 2009. Vol. 326. P. 592-596.
  40. Shimamoto C., Ohnishi T., Maekawa M. et al. Functional characterization of FABP3, 5 and 7 gene variants identified in schizophrenia and autism spectrum disorder and mouse behavioral studies // Hum Mol Genet. 2014. Vol. 23. P. 6495-6511.
  41. Sloviter R.S. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy // Hippocampus. 1991. Vol. 1, № 1. P. 41-66.
  42. Smith C.C., Mauricio R., Nobre L. et al. Differential regulation of perineuronal nets in the brain and spinal cord with exercise training // Brain Res Bull. 2015. Vol. 111. P. 20-26.
  43. Song I., Dityatev A. Crosstalk between glia, extracellular matrix and neurons // Brain Res Bull. 2018. Vol. 136. P. 101-108.
  44. Stamenkovic V., Milenkovic I., Galjak N. et al. Enriched environment alters the behavioral profile of tenascin-C deficient mice // Behav Brain Res. 2017. Vol. 331. P. 241-253.
  45. Steen V.M., Nepal C., Ersland K.M. et al. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1 // PLoS One. 2013. Vol. 8. e79501.
  46. Suttkus A., Rohn S., Weigel S. et al. Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress // Cell Death Dis. 2014. Vol. 5. P. 1119.
  47. Tanahashi S., Yamamura S., Nakagawa M. et al. Clozapine, but not haloperidol, enhances glial D-serine and L-glutamate release in rat frontal cortex and primary cultured astrocytes // Br J Pharmacol. 2012. Vol. 165. P. 1543-1555.
  48. Thompson E.H., Lensjo K.K., Wigestrand M.B. et al. Removal of perineuronal nets disrupts recall of a remote fear memory // Proc Natl Acad Sci U S A. 2018. Vol. 115, № 3. P. 607-612.
  49. Tomasi D., Volkow N.D. Mapping small-world properties through development in the human brain: disruption in schizophrenia // PLoS One. 2014. Vol. 9. e96176.
  50. Wasser C.R., Herz J. Reelin: Neurodevelopmental architect and homeostatic regulator of excitatory synapses // J Biol Chem. 2017. Vol. 292. P. 1330-1338.
  51. Watanabe A., Toyota T., Owada Y. et al. Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotyp // PLoS Biol. 2007. Vol. 5. e297.
  52. Watanabe H., Yamada Y. Chondrodysplasia of gene knockout mice for aggrecan and link protein // Glycoconj J. 2002. Vol. 19, № 4. P. 269-273.
  53. Watanabe H., Yamada Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities // Nat Genet. 1999. Vol. 21, № 2. P. 225-229.
  54. Weber P., Bartsch U., Rasband M.N. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS // J Neurosci. 1999. Vol. 19. P. 4245-4262.
  55. Wiesel T.N., Hubel D.H. Extent of recovery from the effects of visual deprivation in kittens // J Neurophysiol. 1965. Vol. 28, № 6. P. 1060-1072.
  56. Wittner L., Huberfeld G., Clemenceau S. et al. The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro // Brain. 2009. Vol. 132, № 11. P. 3032-3046.
  57. Woo T.U. Neurobiology of schizophrenia onset. // Curr Top Behav Neurosci. 2014. Vol. 16. P. 267-295.

© Швалев В.Н., Сосунов А.А., Челышев Ю.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах