Ophthalmic imaging and artificial intelligence in early diagnosis of Alzheimer disease
- Authors: Makarushkina D.N.1, Mamedov V.A.1, Smagulova G.1, Khasanova A.I.1, Yunusova N.F.1, Dadaev A.R.1, Gabbasova L.K.1, Sadykova A.I.1, Barotova Z.A.1, Valeeva E.R.1, Davletbaeva Z.G.1, Ayupov D.E.1
-
Affiliations:
- Bashkir State Medical University
- Issue: Vol LVII, No 4 (2025)
- Pages: 342-357
- Section: Reviews
- URL: https://journals.rcsi.science/1027-4898/article/view/364034
- DOI: https://doi.org/10.17816/nb690471
- EDN: https://elibrary.ru/MHCWZA
- ID: 364034
Cite item
Abstract
Alzheimer disease represents a major medical and social challenge owning to the complexity of its diagnosis, especially at the preclinical stage. This underscores the need for noninvasive and cost-effective screening methods. This review summarizes current evidence on using ophthalmic imaging modalities and artificial intelligence technologies for early detection of Alzheimer disease. The diagnostic potential of retinal biomarkers identified with optical coherence tomography and optical coherence tomography angiography is detailed, including thinning of the peripapillary retinal nerve fiber layer, reduced macular and choroidal thickness, decreased capillary perfusion density, and deposition of pathological proteins. These changes correlate with cerebral condition and can be detected at preclinical stages of Alzheimer disease. The article describes the roles of machine-learning algorithms and neural networks in automated image analysis, demonstrating their ability to identify complex imaging patterns and substantially improve diagnostic accuracy (AUC > 0.9). It also addresses methodological limitations and implementation challenges—including variability of results, insufficient specificity, and the black-box nature of artificial intelligence. We also highlight the high potential of multimodal approaches that combine retinal imaging with MRI and positron emission tomography. The evidence presented supports the feasibility of developing standardized protocols for the use of retinal biomarkers and artificial intelligence technologies as tools for large-scale screening of at-risk populations, enabling their integration into clinical practice for earlier initiation of therapy.
About the authors
Darya N. Makarushkina
Bashkir State Medical University
Author for correspondence.
Email: Kimdarya097@mail.ru
ORCID iD: 0009-0003-5323-2569
Russian Federation, Ufa
Vali A. Mamedov
Bashkir State Medical University
Email: vali-mamedov2002@mail.ru
ORCID iD: 0009-0002-2663-0855
Russian Federation, Ufa
Galiya Smagulova
Bashkir State Medical University
Email: smagulova200802@mail.ru
ORCID iD: 0009-0002-6796-3859
student
Russian Federation, UfaAynaza I. Khasanova
Bashkir State Medical University
Email: ainaza03@mail.ru
ORCID iD: 0009-0002-0330-1397
student
Russian Federation, UfaNurgiza F. Yunusova
Bashkir State Medical University
Email: Yun_nurgiza@mail.ru
ORCID iD: 0009-0005-9715-8051
student
Russian Federation, UfaAdam R. Dadaev
Bashkir State Medical University
Email: adamdadaev993@gmail.com
ORCID iD: 0000-0002-9411-7394
student
Russian Federation, UfaLiliya K. Gabbasova
Bashkir State Medical University
Email: gabbasova_liliya@list.ru
ORCID iD: 0009-0006-0062-9396
student
Russian Federation, UfaAigul I. Sadykova
Bashkir State Medical University
Email: aygul-sadykova-2020@mail.ru
ORCID iD: 0009-0003-5261-9534
student
Russian Federation, UfaZilola A. Barotova
Bashkir State Medical University
Email: zilola_barotova@mail.ru
ORCID iD: 0009-0001-8492-0343
student
Russian Federation, UfaElina R. Valeeva
Bashkir State Medical University
Email: elina.valeeva.2002@bk.ru
ORCID iD: 0009-0005-4351-6693
student
Russian Federation, UfaZiliya G. Davletbaeva
Bashkir State Medical University
Email: ziliya1101@gmail.com
ORCID iD: 0009-0001-9162-5473
student
Russian Federation, UfaDaniil E. Ayupov
Bashkir State Medical University
Email: ayupov.daniil@gmail.com
ORCID iD: 0009-0005-1291-439X
student
Russian Federation, UfaReferences
- Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's DIsease: causes and treatment. Molecules. 2020;25(24):5789. doi: 10.3390/molecules25245789
- Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26(8 Suppl):S177–S183. doi: 10.37765/ajmc.2020.88482
- Abubakar MB, Sanusi KO, Ugusman A, et al. Alzheimer's disease: an update and insights into pathophysiology. Front Aging Neurosci. 2022;14:742408. doi: 10.3389/fnagi.2022.742408
- Lokshina AB, Grishina DA, Obukhova AV. Early-onset Alzheimer's disease. Neurology, Neuropsychiatry, Psychosomatics. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):110–116. doi: 10.14412/2074-2711-2022-2-110-116 EDN: QCSUDD
- Bogolepova AN, Vasenina EE, Vakhnina NV, et al. Resolution of the expert council on the problem of early diagnosis of Alzheimer's disease. Neurology, Neuropsychiatry, Psychosomatics. 2024;16(5):111–119. doi: 10.14412/2074-2711-2024-5-111-119 EDN: JAMOUX
- Aramadaka S, Mannam R, Sankara Narayanan R, et al. Neuroimaging in Alzheimer's disease for early diagnosis: a comprehensive review. Cureus. 2023;15(5):e38544. doi: 10.7759/cureus.38544
- Kaštelan S, Braš M, Pjevač N, et al. Tear biomarkers and Alzheimer's disease. Int J Mol Sci. 2023;24(17):13429. doi: 10.3390/ijms241713429
- Yuan A, Lee CS. Retinal biomarkers for Alzheimer disease: the facts and the future. Asia Pac J Ophthalmol (Phila). 2022;11(2):140–148. doi: 10.1097/APO.0000000000000505
- Li C, Wang S, Xia Y, et al. Risk factors and predictive models in the progression from MCI to Alzheimer's disease. Neuroscience. 2025;565:312–319. doi: 10.1016/j.neuroscience.2024.11.056
- van Oostveen WM, de Lange ECM. Imaging techniques in Alzheimer's disease: a review of applications in early diagnosis and longitudinal monitoring. Int J Mol Sci. 2021;22(4):2110. doi: 10.3390/ijms22042110
- Chaitanuwong P, Singhanetr P, Chainakul M, et al. Potential ocular biomarkers for early detection of Alzheimer's disease and their roles in artificial intelligence studies. Neurol Ther. 2023;12(5):1517–1532. doi: 10.1007/s40120-023-00526-0
- Dave N, Lee M, Pavlou H, et al. Unlocking ocular biomarkers for early detection of Alzheimer's disease. Alzheimers Dement. 2025;21(2):e14567. doi: 10.1002/alz.14567
- Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer's and neurodegenerative diseases. Alzheimers Dement. 2021;17(1):103–111. doi: 10.1002/alz.12179
- Cheung CY, Mok V, Foster PJ, et al. Retinal imaging in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2021;92(9):983–994. doi: 10.1136/jnnp-2020-325347
- Fursova AZh, Gamza YuA, Zubkova MYu, et al. Ophthalmic examination in the debut and during progression of neurodegenerative diseases. Russian Ophthalmological Journal. 2021;14(1):104–110. doi: 10.21516/2072-0076-2021-14-1-104-110 EDN: YAJKKM
- Zueva MV, Zhuravleva AN, Bogolepova AN. Dendritic branching of retinal ganglion cells as a biomarker of glaucomatous optic neuropathy and Alzheimer’s disease and a target of neuroprotective therapy. Ophthalmology in Russia. 2022;19(3):532–540. doi: 10.18008/1816-5095-2022-3-532-540 EDN: AZUNTM
- Ge YJ, Xu W, Ou YN, et al. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev. 2021;69:101361. doi: 10.1016/j.arr.2021.101361
- Byun MS, Park SW, Lee JH, et al. Association of retinal changes with Alzheimer disease neuroimaging biomarkers in cognitively normal individuals. JAMA Ophthalmol. 2021;139(5):548–556. doi: 10.1001/jamaophthalmol.2021.0320
- Alber J, Bouwman F, den Haan J, et al. Retina pathology as a target for biomarkers for Alzheimer's disease: current status, ophthalmopathological background, challenges, and future directions. Alzheimers Dement. 2024;20(1):728–740. doi: 10.1002/alz.13529
- Tang MY, Blazes MS, Lee CS. Imaging amyloid and tau in the retina: current research and future directions. J Neuroophthalmol. 2023;43(2):168–179. doi: 10.1097/WNO.0000000000001786
- Zhang Y, Wang Y, Shi C, et al. Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer’s disease. Transl Neurodegener. 2021;10(1):6. doi: 10.1186/s40035-021-00230-9
- Moons L, De Groef L. Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease. Curr Opin Neurobiol. 2022;72:1–7. doi: 10.1016/j.conb.2021.07.007
- Ma X, Wang X, Xiao Y, et al. Retinal examination modalities in the early detection of Alzheimer's disease: Seeing brain through the eye. J Transl Intern Med. 2022;10(3):185–187. doi: 10.2478/jtim-2021-0053
- Cao Q, Yang S, Wang X, et al. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease. J Exp Med. 2024;221(11):e20240386. doi: 10.1084/jem.20240386
- Shi H, Mirzaei N, Koronyo Y, et al. Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status. Acta Neuropathol. 2024;148(1):3. doi: 10.1007/s00401-024-02760-8
- Donato L, Mordà D, Scimone C, et al. Bridging retinal and cerebral neurodegeneration: a focus on crosslinks between Alzheimer-Perusini's disease and retinal dystrophies. Biomedicines. 2023;11(12):3258. doi: 10.3390/biomedicines11123258
- Ashok A, Singh N, Chaudhary S, et al. Retinal degeneration and Alzheimer's disease: an evolving link. Int J Mol Sci. 2020;21(19):7290. doi: 10.3390/ijms21197290
- Gao R, Luo H, Yan S, et al. Retina as a potential biomarker for the early stage of Alzheimer's disease spectrum. Ann Clin Transl Neurol. 2024;11(10):2583–2596. doi: 10.1002/acn3.52172
- Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol. 2020;139(5):813–836. doi: 10.1007/s00401-020-02134-w
- Egle M, Deal JA, Walker KA, et al. Association between retinal microvascular abnormalities and late-life brain amyloid-β deposition: the ARIC-PET study. Alzheimers Res Ther. 2024;16(1):100. doi: 10.1186/s13195-024-01461-4
- Fursova AZh, Zubkova MYu, Gamza YuA, et al. Oct-angiography in neurodegenerative diseases examination. Bulletin of Pirogov National Medical & Surgical Center. 2023;18(1):139–144. doi: 10.25881/20728255_2023_18_1_139 EDN: XYWUQO
- Wang L, Mao X. Role of retinal amyloid-β in neurodegenerative diseases: overlapping mechanisms and emerging clinical applications. Int J Mol Sci. 2021;22(5):2360. doi: 10.3390/ijms22052360
- Attiku Y, He Y, Nittala MG, Sadda SR. Current status and future possibilities of retinal imaging in diabetic retinopathy care applicable to low- and medium-income countries. Indian J Ophthalmol. 2021;69(11):2968–2976. doi: 10.4103/ijo.IJO_1212_21
- Olivares Ordoñez MA, Smith RC, Yiu G, et al. Retinal microstructural and microvascular changes in Alzheimer disease: a review. Int Ophthalmol Clin. 2025;65(1):59–67. doi: 10.1097/IIO.0000000000000549
- Dumitrascu OM, Doustar J, Fuchs DT, et al. Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial. Acta Neuropathol Commun. 2024;12(1):109. doi: 10.1186/s40478-024-01810-2
- Dumitrascu OM, Lyden PD, Torbati T, et al. Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline. Alzheimers Dement (Amst). 2020;12(1):e12109. doi: 10.1002/dad2.12109
- Sidiqi A, Wahl D, Lee S, et al. In vivo retinal fluorescence imaging with curcumin in an alzheimer mouse model. Front Neurosci. 2020;14:713. doi: 10.3389/fnins.2020.00713
- Mainster MA, Desmettre T, Querques G, et al. Scanning laser ophthalmoscopy retroillumination: applications and illusions. Int J Retina Vitreous. 2022;8(1):71. doi: 10.1186/s40942-022-00421-0
- Rim TH, Teo AWJ, Yang HHS, et al. Retinal vascular signs and cerebrovascular diseases. J Neuroophthalmol. 2020;40(1):44–59. doi: 10.1097/WNO.0000000000000888
- Ashraf G, McGuinness M, Khan MA, et al. Retinal imaging biomarkers of Alzheimer's disease: a systematic review and meta-analysis of studies using brain amyloid beta status for case definition. Alzheimers Dement (Amst). 2023;15(2):e12421. doi: 10.1002/dad2.12421
- Hao X, Zhang W, Jiao B, et al. Correlation between retinal structure and brain multimodal magnetic resonance imaging in patients with Alzheimer's disease. Front Aging Neurosci. 2023;15:1088829. doi: 10.3389/fnagi.2023.1088829
- Tadokoro K, Yamashita T, Kimura S, et al. Retinal amyloid imaging for screening Alzheimer's disease. J Alzheimers Dis. 2021;83(2):927–934. doi: 10.3233/JAD-210327
- Zhao B, Yan Y, Wu X, et al. The correlation of retinal neurodegeneration and brain degeneration in patients with Alzheimer's disease using optical coherence tomography angiography and MRI. Front Aging Neurosci. 2023;15:1089188. doi: 10.3389/fnagi.2023.1089188
- Shi H, Koronyo Y, Rentsendorj A, et al. Retinal vasculopathy in Alzheimer's disease. Front Neurosci. 2021;15:731614. doi: 10.3389/fnins.2021.731614
- Kaštelan S, Gverović Antunica A, Puzović V, et al. Non-invasive retinal biomarkers for early diagnosis of Alzheimer's disease. Biomedicines. 2025;13(2):283. doi: 10.3390/biomedicines13020283
- Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health. 2022;4(11):e806–e815. doi: 10.1016/S2589-7500(22)00169-8
- Sun Y, Zhang L, Ye H, et al. Potential ocular indicators to distinguish posterior cortical atrophy and typical Alzheimer’s disease: a cross-section study using optical coherence tomography angiography. Alzheimers Res Ther. 2024;16(1):64. doi: 10.1186/s13195-024-01431-w
- Jiang F, Ma J, Lei C, et al. Age-related macular degeneration: cellular and molecular signaling mechanisms. Int J Mol Sci. 2025;26(13):6174. doi: 10.3390/ijms26136174
- Fernández-Albarral JA, Salazar JJ, de Hoz R, et al. Retinal molecular changes are associated with neuroinflammation and loss of RGCs in an experimental model of glaucoma. Int J Mol Sci. 2021;22(4):2066. doi: 10.3390/ijms22042066
- Wang Z, Keane PA, Chiang M, et al. Artificial intelligence and deep learning in ophthalmology. In: Artificial Intelligence in Medicine. Cham: Springer International Publishing; 2022. P. 1519–1552. doi: 10.1007/978-3-030-64573-1_200
- López-Cuenca I, Salobrar-García E, Elvira-Hurtado L, et al. The value of OCT and OCTA as potential biomarkers for preclinical Alzheimer's disease: a review study. Life (Basel). 2021;11(7):712. doi: 10.3390/life11070712
- Tukur HN, Uwishema O, Akbay H, et al. AI-assisted ophthalmic imaging for early detection of neurodegenerative diseases. Int J Emerg Med. 2025;18(1):90. doi: 10.1186/s12245-025-00870-y
- Mirzaei N, Shi H, Oviatt M, et al. Alzheimer's retinopathy: seeing disease in the eyes. Front Neurosci. 2020;14:921. doi: 10.3389/fnins.2020.00921
- Ibragimova RR, Gilmanov II, Lopukhova EA, et al. Algorithm of segmentation of OCT macular images to analyze the results in patients with age-related macular degeneration. Bulletin of RSMU. 2022;(6):89–96. doi: 10.24075/vrgmu.2022.062 EDN: QVBAOZ
- Alber J, Goldfarb D, Thompson LI, et al. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement. 2020;16(1):229–243. doi: 10.1002/alz.12006
- Lin D, Xiong J, Liu C, et al. Application of comprehensive artificial intelligence retinal expert (CARE) system: a national real-world evidence study. Lancet Digit Health. 2021;3(8):e486–e495. doi: 10.1016/S2589-7500(21)00086-8
- Abràmoff MD, Cunningham B, Patel B, et al. Foundational considerations for artificial intelligence using ophthalmic images. Ophthalmology. 2022;129(2):e14–e32. doi: 10.1016/j.ophtha.2021.08.023
- Oshika T. Artificial intelligence applications in ophthalmology. JMA J. 2025;8(1):66–75. doi: 10.31662/jmaj.2024-0139
- Kazemzadeh K. Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations. Med Hypothesis Discov Innov Ophthalmol. 2025;14(1):255–272. doi: 10.51329/mehdiophthal1517
- Wang X, Wang Y, Liu H, et al. Macular microvascular density as a diagnostic biomarker for Alzheimer's disease. J Alzheimers Dis. 2022;90(1):139–149. doi: 10.3233/JAD-220482
- Katalevskaya EA, Katalevskiy DYu, Turikov MI, et al. Future of artificial intelligence for the diagnosis and treatment of retinal diseases. Russian Journal of Clinical Ophthalmology. 2022;22(1):36–43. doi: 10.32364/2311-7729-2022-22-1-36-43 EDN: AEBQGU
- Neroev VV, Zaytseva OV, Petrov SY, et al. Artificial intelligence in ophthalmology: the present and the future. Russian Ophthalmological Journal. 2024;17(2):135–141. doi: 10.21516/2072-0076-2024-17-2-135-141 EDN: NWXIQQ
- Kumar R, Waisberg E, Ong J, et al. Artificial intelligence-based methodologies for early diagnostic precision and personalized therapeutic strategies in neuro-ophthalmic and neurodegenerative pathologies. Brain Sci. 2024;14(12):1266. doi: 10.3390/brainsci14121266
- Hasan MM, Phu J, Sowmya A, et al. Artificial intelligence in the diagnosis of glaucoma and neurodegenerative diseases. Clin Exp Optom. 2024;107(2):130–146. doi: 10.1080/08164622.2023.2235346
- Ganji Z, Nikparast F, Shoeibi N, et al. Retinal imaging and artificial intelligence: a systematic review and meta-analysis of diagnostic techniques for neurodegenerative diseases. Photodiagnosis Photodyn Ther. 2025;55:104788. doi: 10.1016/j.pdpdt.2025.104788
- Ali H. AI in neurodegenerative disease research: early detection, cognitive decline prediction, and brain imaging biomarker identification. Int J Eng Technol Res Manag. 2022;6(10):71–89. doi: 10.5281/zenodo.14890442
- Tan YY, Kang HG, Lee CJ, et al. Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging. Eye Vis (Lond). 2024;11(1):17. doi: 10.1186/s40662-024-00384-3
- Khanna NN, Maindarkar MA, Viswanathan V, et al. Economics of artificial intelligence in healthcare: diagnosis vs. treatment. Healthcare (Basel). 2022;10(12):2493. doi: 10.3390/healthcare10122493
Supplementary files
