Ophthalmic imaging and artificial intelligence in early diagnosis of Alzheimer disease

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Alzheimer disease represents a major medical and social challenge owning to the complexity of its diagnosis, especially at the preclinical stage. This underscores the need for noninvasive and cost-effective screening methods. This review summarizes current evidence on using ophthalmic imaging modalities and artificial intelligence technologies for early detection of Alzheimer disease. The diagnostic potential of retinal biomarkers identified with optical coherence tomography and optical coherence tomography angiography is detailed, including thinning of the peripapillary retinal nerve fiber layer, reduced macular and choroidal thickness, decreased capillary perfusion density, and deposition of pathological proteins. These changes correlate with cerebral condition and can be detected at preclinical stages of Alzheimer disease. The article describes the roles of machine-learning algorithms and neural networks in automated image analysis, demonstrating their ability to identify complex imaging patterns and substantially improve diagnostic accuracy (AUC > 0.9). It also addresses methodological limitations and implementation challenges—including variability of results, insufficient specificity, and the black-box nature of artificial intelligence. We also highlight the high potential of multimodal approaches that combine retinal imaging with MRI and positron emission tomography. The evidence presented supports the feasibility of developing standardized protocols for the use of retinal biomarkers and artificial intelligence technologies as tools for large-scale screening of at-risk populations, enabling their integration into clinical practice for earlier initiation of therapy.

About the authors

Darya N. Makarushkina

Bashkir State Medical University

Author for correspondence.
Email: Kimdarya097@mail.ru
ORCID iD: 0009-0003-5323-2569
Russian Federation, Ufa

Vali A. Mamedov

Bashkir State Medical University

Email: vali-mamedov2002@mail.ru
ORCID iD: 0009-0002-2663-0855
Russian Federation, Ufa

Galiya Smagulova

Bashkir State Medical University

Email: smagulova200802@mail.ru
ORCID iD: 0009-0002-6796-3859

student

Russian Federation, Ufa

Aynaza I. Khasanova

Bashkir State Medical University

Email: ainaza03@mail.ru
ORCID iD: 0009-0002-0330-1397

student

Russian Federation, Ufa

Nurgiza F. Yunusova

Bashkir State Medical University

Email: Yun_nurgiza@mail.ru
ORCID iD: 0009-0005-9715-8051

student

Russian Federation, Ufa

Adam R. Dadaev

Bashkir State Medical University

Email: adamdadaev993@gmail.com
ORCID iD: 0000-0002-9411-7394

student

Russian Federation, Ufa

Liliya K. Gabbasova

Bashkir State Medical University

Email: gabbasova_liliya@list.ru
ORCID iD: 0009-0006-0062-9396

student

Russian Federation, Ufa

Aigul I. Sadykova

Bashkir State Medical University

Email: aygul-sadykova-2020@mail.ru
ORCID iD: 0009-0003-5261-9534

student

Russian Federation, Ufa

Zilola A. Barotova

Bashkir State Medical University

Email: zilola_barotova@mail.ru
ORCID iD: 0009-0001-8492-0343

student

Russian Federation, Ufa

Elina R. Valeeva

Bashkir State Medical University

Email: elina.valeeva.2002@bk.ru
ORCID iD: 0009-0005-4351-6693

student

Russian Federation, Ufa

Ziliya G. Davletbaeva

Bashkir State Medical University

Email: ziliya1101@gmail.com
ORCID iD: 0009-0001-9162-5473

student

Russian Federation, Ufa

Daniil E. Ayupov

Bashkir State Medical University

Email: ayupov.daniil@gmail.com
ORCID iD: 0009-0005-1291-439X

student

Russian Federation, Ufa

References

  1. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's DIsease: causes and treatment. Molecules. 2020;25(24):5789. doi: 10.3390/molecules25245789
  2. Wong W. Economic burden of Alzheimer disease and managed care considerations. Am J Manag Care. 2020;26(8 Suppl):S177–S183. doi: 10.37765/ajmc.2020.88482
  3. Abubakar MB, Sanusi KO, Ugusman A, et al. Alzheimer's disease: an update and insights into pathophysiology. Front Aging Neurosci. 2022;14:742408. doi: 10.3389/fnagi.2022.742408
  4. Lokshina AB, Grishina DA, Obukhova AV. Early-onset Alzheimer's disease. Neurology, Neuropsychiatry, Psychosomatics. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):110–116. doi: 10.14412/2074-2711-2022-2-110-116 EDN: QCSUDD
  5. Bogolepova AN, Vasenina EE, Vakhnina NV, et al. Resolution of the expert council on the problem of early diagnosis of Alzheimer's disease. Neurology, Neuropsychiatry, Psychosomatics. 2024;16(5):111–119. doi: 10.14412/2074-2711-2024-5-111-119 EDN: JAMOUX
  6. Aramadaka S, Mannam R, Sankara Narayanan R, et al. Neuroimaging in Alzheimer's disease for early diagnosis: a comprehensive review. Cureus. 2023;15(5):e38544. doi: 10.7759/cureus.38544
  7. Kaštelan S, Braš M, Pjevač N, et al. Tear biomarkers and Alzheimer's disease. Int J Mol Sci. 2023;24(17):13429. doi: 10.3390/ijms241713429
  8. Yuan A, Lee CS. Retinal biomarkers for Alzheimer disease: the facts and the future. Asia Pac J Ophthalmol (Phila). 2022;11(2):140–148. doi: 10.1097/APO.0000000000000505
  9. Li C, Wang S, Xia Y, et al. Risk factors and predictive models in the progression from MCI to Alzheimer's disease. Neuroscience. 2025;565:312–319. doi: 10.1016/j.neuroscience.2024.11.056
  10. van Oostveen WM, de Lange ECM. Imaging techniques in Alzheimer's disease: a review of applications in early diagnosis and longitudinal monitoring. Int J Mol Sci. 2021;22(4):2110. doi: 10.3390/ijms22042110
  11. Chaitanuwong P, Singhanetr P, Chainakul M, et al. Potential ocular biomarkers for early detection of Alzheimer's disease and their roles in artificial intelligence studies. Neurol Ther. 2023;12(5):1517–1532. doi: 10.1007/s40120-023-00526-0
  12. Dave N, Lee M, Pavlou H, et al. Unlocking ocular biomarkers for early detection of Alzheimer's disease. Alzheimers Dement. 2025;21(2):e14567. doi: 10.1002/alz.14567
  13. Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer's and neurodegenerative diseases. Alzheimers Dement. 2021;17(1):103–111. doi: 10.1002/alz.12179
  14. Cheung CY, Mok V, Foster PJ, et al. Retinal imaging in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2021;92(9):983–994. doi: 10.1136/jnnp-2020-325347
  15. Fursova AZh, Gamza YuA, Zubkova MYu, et al. Ophthalmic examination in the debut and during progression of neurodegenerative diseases. Russian Ophthalmological Journal. 2021;14(1):104–110. doi: 10.21516/2072-0076-2021-14-1-104-110 EDN: YAJKKM
  16. Zueva MV, Zhuravleva AN, Bogolepova AN. Dendritic branching of retinal ganglion cells as a biomarker of glaucomatous optic neuropathy and Alzheimer’s disease and a target of neuroprotective therapy. Ophthalmology in Russia. 2022;19(3):532–540. doi: 10.18008/1816-5095-2022-3-532-540 EDN: AZUNTM
  17. Ge YJ, Xu W, Ou YN, et al. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev. 2021;69:101361. doi: 10.1016/j.arr.2021.101361
  18. Byun MS, Park SW, Lee JH, et al. Association of retinal changes with Alzheimer disease neuroimaging biomarkers in cognitively normal individuals. JAMA Ophthalmol. 2021;139(5):548–556. doi: 10.1001/jamaophthalmol.2021.0320
  19. Alber J, Bouwman F, den Haan J, et al. Retina pathology as a target for biomarkers for Alzheimer's disease: current status, ophthalmopathological background, challenges, and future directions. Alzheimers Dement. 2024;20(1):728–740. doi: 10.1002/alz.13529
  20. Tang MY, Blazes MS, Lee CS. Imaging amyloid and tau in the retina: current research and future directions. J Neuroophthalmol. 2023;43(2):168–179. doi: 10.1097/WNO.0000000000001786
  21. Zhang Y, Wang Y, Shi C, et al. Advances in retina imaging as potential biomarkers for early diagnosis of Alzheimer’s disease. Transl Neurodegener. 2021;10(1):6. doi: 10.1186/s40035-021-00230-9
  22. Moons L, De Groef L. Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease. Curr Opin Neurobiol. 2022;72:1–7. doi: 10.1016/j.conb.2021.07.007
  23. Ma X, Wang X, Xiao Y, et al. Retinal examination modalities in the early detection of Alzheimer's disease: Seeing brain through the eye. J Transl Intern Med. 2022;10(3):185–187. doi: 10.2478/jtim-2021-0053
  24. Cao Q, Yang S, Wang X, et al. Transport of β-amyloid from brain to eye causes retinal degeneration in Alzheimer's disease. J Exp Med. 2024;221(11):e20240386. doi: 10.1084/jem.20240386
  25. Shi H, Mirzaei N, Koronyo Y, et al. Identification of retinal oligomeric, citrullinated, and other tau isoforms in early and advanced AD and relations to disease status. Acta Neuropathol. 2024;148(1):3. doi: 10.1007/s00401-024-02760-8
  26. Donato L, Mordà D, Scimone C, et al. Bridging retinal and cerebral neurodegeneration: a focus on crosslinks between Alzheimer-Perusini's disease and retinal dystrophies. Biomedicines. 2023;11(12):3258. doi: 10.3390/biomedicines11123258
  27. Ashok A, Singh N, Chaudhary S, et al. Retinal degeneration and Alzheimer's disease: an evolving link. Int J Mol Sci. 2020;21(19):7290. doi: 10.3390/ijms21197290
  28. Gao R, Luo H, Yan S, et al. Retina as a potential biomarker for the early stage of Alzheimer's disease spectrum. Ann Clin Transl Neurol. 2024;11(10):2583–2596. doi: 10.1002/acn3.52172
  29. Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer's disease retina. Acta Neuropathol. 2020;139(5):813–836. doi: 10.1007/s00401-020-02134-w
  30. Egle M, Deal JA, Walker KA, et al. Association between retinal microvascular abnormalities and late-life brain amyloid-β deposition: the ARIC-PET study. Alzheimers Res Ther. 2024;16(1):100. doi: 10.1186/s13195-024-01461-4
  31. Fursova AZh, Zubkova MYu, Gamza YuA, et al. Oct-angiography in neurodegenerative diseases examination. Bulletin of Pirogov National Medical & Surgical Center. 2023;18(1):139–144. doi: 10.25881/20728255_2023_18_1_139 EDN: XYWUQO
  32. Wang L, Mao X. Role of retinal amyloid-β in neurodegenerative diseases: overlapping mechanisms and emerging clinical applications. Int J Mol Sci. 2021;22(5):2360. doi: 10.3390/ijms22052360
  33. Attiku Y, He Y, Nittala MG, Sadda SR. Current status and future possibilities of retinal imaging in diabetic retinopathy care applicable to low- and medium-income countries. Indian J Ophthalmol. 2021;69(11):2968–2976. doi: 10.4103/ijo.IJO_1212_21
  34. Olivares Ordoñez MA, Smith RC, Yiu G, et al. Retinal microstructural and microvascular changes in Alzheimer disease: a review. Int Ophthalmol Clin. 2025;65(1):59–67. doi: 10.1097/IIO.0000000000000549
  35. Dumitrascu OM, Doustar J, Fuchs DT, et al. Retinal peri-arteriolar versus peri-venular amyloidosis, hippocampal atrophy, and cognitive impairment: exploratory trial. Acta Neuropathol Commun. 2024;12(1):109. doi: 10.1186/s40478-024-01810-2
  36. Dumitrascu OM, Lyden PD, Torbati T, et al. Sectoral segmentation of retinal amyloid imaging in subjects with cognitive decline. Alzheimers Dement (Amst). 2020;12(1):e12109. doi: 10.1002/dad2.12109
  37. Sidiqi A, Wahl D, Lee S, et al. In vivo retinal fluorescence imaging with curcumin in an alzheimer mouse model. Front Neurosci. 2020;14:713. doi: 10.3389/fnins.2020.00713
  38. Mainster MA, Desmettre T, Querques G, et al. Scanning laser ophthalmoscopy retroillumination: applications and illusions. Int J Retina Vitreous. 2022;8(1):71. doi: 10.1186/s40942-022-00421-0
  39. Rim TH, Teo AWJ, Yang HHS, et al. Retinal vascular signs and cerebrovascular diseases. J Neuroophthalmol. 2020;40(1):44–59. doi: 10.1097/WNO.0000000000000888
  40. Ashraf G, McGuinness M, Khan MA, et al. Retinal imaging biomarkers of Alzheimer's disease: a systematic review and meta-analysis of studies using brain amyloid beta status for case definition. Alzheimers Dement (Amst). 2023;15(2):e12421. doi: 10.1002/dad2.12421
  41. Hao X, Zhang W, Jiao B, et al. Correlation between retinal structure and brain multimodal magnetic resonance imaging in patients with Alzheimer's disease. Front Aging Neurosci. 2023;15:1088829. doi: 10.3389/fnagi.2023.1088829
  42. Tadokoro K, Yamashita T, Kimura S, et al. Retinal amyloid imaging for screening Alzheimer's disease. J Alzheimers Dis. 2021;83(2):927–934. doi: 10.3233/JAD-210327
  43. Zhao B, Yan Y, Wu X, et al. The correlation of retinal neurodegeneration and brain degeneration in patients with Alzheimer's disease using optical coherence tomography angiography and MRI. Front Aging Neurosci. 2023;15:1089188. doi: 10.3389/fnagi.2023.1089188
  44. Shi H, Koronyo Y, Rentsendorj A, et al. Retinal vasculopathy in Alzheimer's disease. Front Neurosci. 2021;15:731614. doi: 10.3389/fnins.2021.731614
  45. Kaštelan S, Gverović Antunica A, Puzović V, et al. Non-invasive retinal biomarkers for early diagnosis of Alzheimer's disease. Biomedicines. 2025;13(2):283. doi: 10.3390/biomedicines13020283
  46. Cheung CY, Ran AR, Wang S, et al. A deep learning model for detection of Alzheimer's disease based on retinal photographs: a retrospective, multicentre case-control study. Lancet Digit Health. 2022;4(11):e806–e815. doi: 10.1016/S2589-7500(22)00169-8
  47. Sun Y, Zhang L, Ye H, et al. Potential ocular indicators to distinguish posterior cortical atrophy and typical Alzheimer’s disease: a cross-section study using optical coherence tomography angiography. Alzheimers Res Ther. 2024;16(1):64. doi: 10.1186/s13195-024-01431-w
  48. Jiang F, Ma J, Lei C, et al. Age-related macular degeneration: cellular and molecular signaling mechanisms. Int J Mol Sci. 2025;26(13):6174. doi: 10.3390/ijms26136174
  49. Fernández-Albarral JA, Salazar JJ, de Hoz R, et al. Retinal molecular changes are associated with neuroinflammation and loss of RGCs in an experimental model of glaucoma. Int J Mol Sci. 2021;22(4):2066. doi: 10.3390/ijms22042066
  50. Wang Z, Keane PA, Chiang M, et al. Artificial intelligence and deep learning in ophthalmology. In: Artificial Intelligence in Medicine. Cham: Springer International Publishing; 2022. P. 1519–1552. doi: 10.1007/978-3-030-64573-1_200
  51. López-Cuenca I, Salobrar-García E, Elvira-Hurtado L, et al. The value of OCT and OCTA as potential biomarkers for preclinical Alzheimer's disease: a review study. Life (Basel). 2021;11(7):712. doi: 10.3390/life11070712
  52. Tukur HN, Uwishema O, Akbay H, et al. AI-assisted ophthalmic imaging for early detection of neurodegenerative diseases. Int J Emerg Med. 2025;18(1):90. doi: 10.1186/s12245-025-00870-y
  53. Mirzaei N, Shi H, Oviatt M, et al. Alzheimer's retinopathy: seeing disease in the eyes. Front Neurosci. 2020;14:921. doi: 10.3389/fnins.2020.00921
  54. Ibragimova RR, Gilmanov II, Lopukhova EA, et al. Algorithm of segmentation of OCT macular images to analyze the results in patients with age-related macular degeneration. Bulletin of RSMU. 2022;(6):89–96. doi: 10.24075/vrgmu.2022.062 EDN: QVBAOZ
  55. Alber J, Goldfarb D, Thompson LI, et al. Developing retinal biomarkers for the earliest stages of Alzheimer's disease: What we know, what we don't, and how to move forward. Alzheimers Dement. 2020;16(1):229–243. doi: 10.1002/alz.12006
  56. Lin D, Xiong J, Liu C, et al. Application of comprehensive artificial intelligence retinal expert (CARE) system: a national real-world evidence study. Lancet Digit Health. 2021;3(8):e486–e495. doi: 10.1016/S2589-7500(21)00086-8
  57. Abràmoff MD, Cunningham B, Patel B, et al. Foundational considerations for artificial intelligence using ophthalmic images. Ophthalmology. 2022;129(2):e14–e32. doi: 10.1016/j.ophtha.2021.08.023
  58. Oshika T. Artificial intelligence applications in ophthalmology. JMA J. 2025;8(1):66–75. doi: 10.31662/jmaj.2024-0139
  59. Kazemzadeh K. Artificial intelligence in ophthalmology: opportunities, challenges, and ethical considerations. Med Hypothesis Discov Innov Ophthalmol. 2025;14(1):255–272. doi: 10.51329/mehdiophthal1517
  60. Wang X, Wang Y, Liu H, et al. Macular microvascular density as a diagnostic biomarker for Alzheimer's disease. J Alzheimers Dis. 2022;90(1):139–149. doi: 10.3233/JAD-220482
  61. Katalevskaya EA, Katalevskiy DYu, Turikov MI, et al. Future of artificial intelligence for the diagnosis and treatment of retinal diseases. Russian Journal of Clinical Ophthalmology. 2022;22(1):36–43. doi: 10.32364/2311-7729-2022-22-1-36-43 EDN: AEBQGU
  62. Neroev VV, Zaytseva OV, Petrov SY, et al. Artificial intelligence in ophthalmology: the present and the future. Russian Ophthalmological Journal. 2024;17(2):135–141. doi: 10.21516/2072-0076-2024-17-2-135-141 EDN: NWXIQQ
  63. Kumar R, Waisberg E, Ong J, et al. Artificial intelligence-based methodologies for early diagnostic precision and personalized therapeutic strategies in neuro-ophthalmic and neurodegenerative pathologies. Brain Sci. 2024;14(12):1266. doi: 10.3390/brainsci14121266
  64. Hasan MM, Phu J, Sowmya A, et al. Artificial intelligence in the diagnosis of glaucoma and neurodegenerative diseases. Clin Exp Optom. 2024;107(2):130–146. doi: 10.1080/08164622.2023.2235346
  65. Ganji Z, Nikparast F, Shoeibi N, et al. Retinal imaging and artificial intelligence: a systematic review and meta-analysis of diagnostic techniques for neurodegenerative diseases. Photodiagnosis Photodyn Ther. 2025;55:104788. doi: 10.1016/j.pdpdt.2025.104788
  66. Ali H. AI in neurodegenerative disease research: early detection, cognitive decline prediction, and brain imaging biomarker identification. Int J Eng Technol Res Manag. 2022;6(10):71–89. doi: 10.5281/zenodo.14890442
  67. Tan YY, Kang HG, Lee CJ, et al. Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging. Eye Vis (Lond). 2024;11(1):17. doi: 10.1186/s40662-024-00384-3
  68. Khanna NN, Maindarkar MA, Viswanathan V, et al. Economics of artificial intelligence in healthcare: diagnosis vs. treatment. Healthcare (Basel). 2022;10(12):2493. doi: 10.3390/healthcare10122493

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».