实验性放射性照射下实验小鼠脾脏肥大细胞群体的定量特征
- 作者: Odintsova I.A.1, Rusakova S.E.1, Slutskaya D.R.1, Murzina E.V.1, Trofimov M.A.1
- 
							隶属关系: 
							- Kirov Military Medical Academy
 
- 期: 卷 163, 编号 4 (2025)
- 页面: 283-292
- 栏目: Original Study Articles
- URL: https://journals.rcsi.science/1026-3543/article/view/349033
- DOI: https://doi.org/10.17816/morph.676530
- EDN: https://elibrary.ru/WJRCFA
- ID: 349033
如何引用文章
详细
论证。肥大细胞的定量和形态功能特征可以作为辐射影响后组织反应性的指标,并且是辐射保护剂使用后适应性补偿过程的标准之一。
目的:展示小鼠脾脏中肥大细胞在分次全身X射线照射和口服β-D-葡聚糖处理后的形态功能和定量特征。
方法。进行了一项实验性单中心前瞻性控制研究。研究对象为实验小鼠脾脏样本(n = 23)。在组织切片中定量评估脾脏中肥大细胞的数量。小鼠被分为五组:1 - 完整小鼠(n = 3);2 - 被照射小鼠,累计吸收剂量为7Gy(n = 5);3 - 被照射小鼠,累计吸收剂量为7Gy,照射前15分钟口服β-D-葡聚糖溶液(n = 5);4 - 被照射小鼠,累计吸收剂量为18Gy(n = 5);5 - 被照射小鼠,累计吸收剂量为18Gy,照射前15分钟口服β-D-葡聚糖溶液(n = 5)。在实验处理后的第14天和第30天取材。样本用10%缓冲福尔马林固定,经过酒精脱水并石蜡包埋。切片用Romanowsky–Giemsa染色。每个组织切片上评估结构并统计肥大细胞的数量。对获得的数据进行统计处理。
结果。在吸收剂量为7Gy时,脾脏中肥大细胞的密度变化与完整小鼠相比没有显著差异。而在吸收剂量为18Gy时,肥大细胞的密度和功能活动显著增加。在照射前口服β-D-葡聚糖处理的7Gy照射组肥大细胞数量减少了2.5倍,18Gy组则减少了1.25倍,与未接受β-D-葡聚糖的照射小鼠(比较组4)相比。
结论。脾脏中肥大细胞的分布密度依赖于X射线的吸收剂量。照射前15分钟口服β-D-葡聚糖可以降低肥大细胞的密度,可能表现为积极的辐射保护效应。
作者简介
Irina A. Odintsova
Kirov Military Medical Academy
														Email: odintsova-irina@mail.ru
				                	ORCID iD: 0000-0002-0143-7402
				                	SPIN 代码: 1523-8394
																		                								
Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint PetersburgSvetlana E. Rusakova
Kirov Military Medical Academy
														Email: rusakova-svetik@mail.ru
				                	ORCID iD: 0000-0001-9437-5230
				                	SPIN 代码: 5429-4630
																		                								
Cand. Sci. (Biology), Assistant Professor
俄罗斯联邦, Saint PetersburgDina R. Slutskaya
Kirov Military Medical Academy
							编辑信件的主要联系方式.
							Email: dina_hanieva@mail.ru
				                	ORCID iD: 0000-0003-3910-2621
				                	SPIN 代码: 2546-9393
																		                								
Cand. Sci. (Biology), Assistant Professor
俄罗斯联邦, Saint PetersburgElena V. Murzina
Kirov Military Medical Academy
														Email: elenmurzina@mail.ru
				                	ORCID iD: 0000-0001-7052-3665
				                	SPIN 代码: 5188-0797
																		                								
Cand. Sci. (Biology)
俄罗斯联邦, Saint PetersburgMaksim A. Trofimov
Kirov Military Medical Academy
														Email: greitminisk@gmail.com
				                	ORCID iD: 0000-0001-7610-2669
				                	SPIN 代码: 5152-6278
																		                												                	俄罗斯联邦, 							Saint Petersburg						
参考
- Koterov AN. From very low to very large doses of radiation: new data on ranges definitions and its experimental and epidemiological basing. Мedical Radiology and Radiation Safety. 2013;58(2):5–21. EDN: QEQHKM
- Sofronov GA, Berezovskaya TI, Murzina EV. Morphological characteristics of tissue elements of the spleen of laboratory mice in normal and dosed radiation exposure from the standpoint of the doctrine of the histrionic structure of the organ. In: Makiev RG, Odintsova IA, editors. Innovative technologies for studying histogenesis, reactivity and tissue regeneration (Proceedings of the Military Medical Academy). Saint Petersburg: Voenno-meditsinskaya akademiya im. S.M. Kirova; 2024. P:122–126. EDN: HPMHPQ ISBN: 978-5-94277-106-5
- Murzina EV, Sofronov GA, Simbirtsev AS, et al. Impact of beta-D-glucan on survival and hematopoietic parameters of mice after exposure to X-rays. Medical academic journal. 2023;23(1):53–66. doi: 10.17816/MAJ114742 EDN: WNXTZP
- Reddy SM, Reuben A, Barua S, et al. Poor response of neoadjuvant chemotherapy correlates with mast cell infiltration in inflamatory breast cancer. Cancer Immunol Res. 2019;7(6):1025–1035. doi: 10.1158/2326-6066.CIR-18-0619
- Elieh Ali Komi D, Kuebler WM. Significance of mast cell formed extracellular traps in microbial defense. Clin Rev Allergy Immunol. 2022;62(1):160–179. doi: 10.1007/s12016-021-08861-6
- da Silva EZ, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698–738. doi: 10.1369/0022155414545334 EDN: ZACFMF
- Atiakshin D, Buchwalow I, Tiemann M. Mast cell chymase: morphofunctional characteristics. Histochem Cell Biol. 2019;152(4):253–269. doi: 10.1007/s00418-019-01803-6 EDN: JNSKED
- Lee CG, Moon SR, Cho MY, Park KR. Mast cell degranulation and vascular endothelial growth factor expression in mouse skin following ionizing irradiation. J Radiat Res. 2021;62(5):856–860. doi: 10.1093/jrr/rrab067 EDN: YWFLNV
- Hong YK, Chang YH, Lin YC, et al. Inflammation in wound healing and pathological scarring. Adv Wound care (New Rochelle). 2023;12(5):288–300. doi: 10.1089/wound.2021.0161 EDN: GYJXNX
- Milliat F, François A. Les mastocytes, stakhanovistes de l’immunité — Un rôle énigmatique dans les lésions radiques [The roles of mast cells in radiation-induced damage are still an enigma]. Med Sci (Paris). 2018;34(2):145–154. (In French) doi: 10.1051/medsci/20183402012
- Landy RE, Stross WC, May JM, et al. Idiopathic mast cell activation syndrome and radiation therapy: a case study, literature review, and discussion of mast cell disorders and radiotherapy. Radiat Oncol. 2019;14(1):222. doi: 10.1186/s13014-019-1434–6
- Shin E, Lee S, Kang H, et al. Organ-specific effects of low dose radiation exposure: A comprehensive review. Front Genet. 2020;11:566244. doi: 10.3389/fgene.2020.566244 EDN: QBIQPN
- Joo HM, Nam SY, Yang KH, et al. The effects of low-dose ionizing radiation in the activated rat basophilic leukemia (RBL-2H3) mast cells. J Biol Chem. 2012;287(33):27789–27795. doi: 10.1074/jbc.M112.378497
- Yuan H, Lan P, He Y, et al. Effect of modifications on the physicochemical and biological properties of β-Glucan-A critical review. Molecules. 2019;25(1):57. doi: 10.3390/molecules25010057 EDN: VBKOAX
- Odintsova IA, Rusakova SE, Slutskaya DR, Murzina EV. Reactive changes in the lymphoid histion of the spleen of mice irradiated with a sublethal dose. In: Questions of morphology of the XXI century. Proceedings of the 26th All-Russian Scientific Conference. Saint Petersburg: Limited Liability Company «Izdatel’stvo DEAN», 2024. P:242–246. EDN: SWVNUU
- Slutskaya DR, Berezovskaya TI. Characteristics of functional histions of the spleen of laboratory mice under dosed irradiation. Cytology. 2022;64(3)295–296. (In Russ.)
- Murakami S, Yoshino H, Ishikawa J, et al. Effects of ionizing radiation on differentiation of murine bone marrow cells into mast cells. J Radiat Res. 2015;56(6):865–871. doi: 10.1093/jrr/rrv061
- Smith J, Tan JKH, Short C, et al. The effect of myeloablative radiation on urinary bladder mast cells. Sci Rep. 2024;14(1):6219. doi: 10.1038/s41598-024-56655-5 EDN: ZLVRXG
- Ushakov IB, Kordenko AN. On the relationship of natural and modified radioresistance with mast cell reactivity. Radiation biology. Radioecology. 2023;63(4):387–393 doi: 10.31857/S0869803123040100 EDN: VPVLEU
- Folkerts J, Stadhouders R, Redegeld FA, et al. Effect of dietary fiber and metabolites on mast cell activation and mast cell-associated diseases. Front Immunol. 2018;9:1067. doi: 10.3389/fimmu.2018.01067
- Halova I, Draberova L, Draber P. Mast cell chemotaxis — chemoattractants and signaling pathways. Front Immunol. 2012;3:119. doi: 10.3389/fimmu.2012.00119
补充文件
 
				
			 
						 
						 
					 
						 
						 
				
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅存取
		                                		                                        订阅存取
		                                					


