A New Method for Relaxation of Elastic Stresses During the Growth of Heteroepitaxial Films

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

 In the article, using the example of growing aluminum nitride (AlN) on (110) orientation silicon (Si) with a silicon carbide (SiC) buffer layer, a method for growing a new type of substrates is developed which makes it possible to obtain mechanically unstressed semiconductor heterostructures. A specific feature of the synthesis of this kind of substrates is that the SiC layers used for the growth of AlN films were synthesized by the coordinated atoms substitution method. When this method of growth is used in the Si substrate, some of the Si atoms are replaced by carbon atoms. As a result of the substitution of atoms, the initially smooth Si(110) surface transforms into a SiC surface covered with prism-like growth figures, one side of which is the (111) face and the other is the face. These faces are "substrates" for the further growth of semipolar AlN. The structure and morphology of AlN films have been studied by X-ray diffraction, electron microscopy, and Raman spectroscopy. It was found that the AlN layer is formed by intergrown hexagonal microcrystals, which grow in two directions, and for both orientations of the crystals the following relation is approximately satisfied: AlN || Si(110). It is shown that the half-width of the X-ray rocking curve (FWHM) for the diffraction peak from AlN microcrystals, averaged over the area of the sample, is 20 arc minutes. Raman spectroscopy and X-ray diffraction studies have shown the almost complete absence of mechanical stresses in the AlN layer. A theoretical model is constructed to explain the presence of two orientations of the AlN film on SiC/Si(110) found in the experiment, and a method for controlling their orientation is proposed. It is shown that this morphology of the AlN film makes it possible to use it as a buffer layer for the growth of heterostructures based on gallium nitride and aluminum nitride.

作者简介

A. Koryakin

St. Petersburg State University

Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 199034 Russia

S. Kukushkin

Institute of Problems of Mechanical Engineering RAS

Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 199178 Russia

A. Osipov

St. Petersburg State University

Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 199034 Russia

Sh. Sharofidinov

Ioffe Institute

Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 194021 Russia

M. Shcheglov

Ioffe Institute

编辑信件的主要联系方式.
Email: sergey.a.kukushkin@gmail.com
St. Petersburg, 194021 Russia

参考

  1. Kukushkin S.A., Osipov A.V., Bessolov V.N., Medvedev B.K., Nevolin V.K., Tcarik K.A. Substrates for epitaxy of gallium nitride: new materials and techniques // Rev. Adv. Mater. Sci. 2008. V. 17. P. 1–32.
  2. Barghout K., Chaudhuri J. Calculation of residual thermal stress in GaN epitaxial layers grown on technologically important substrates // J. Mater. Sci. 2004. V. 39. P. 5817–5823. https://doi.org/10.1023/B:JMSC.0000040094.33095.6f
  3. Kukushkin S.A., Osipov A.V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films // J. Phys. D: Appl. Phys. 2014. V. 47. P. 313001. https://doi.org/10.1088/0022-3727/47/31/313001
  4. Кукушкин С.А., Осипов А.В., Феоктистов Н.А. Синтез эпитаксиальных пленок карбида кремния методом замещения атомов в кристаллической решетке кремния // ФТТ. 2014. Т. 56. С. 1457–1498. https://doi.org/10.1134/S1063783414080137
  5. Zytkiewicz Z. Laterally overgrown structures as substrates for lattice mismatched epitaxy // Thin Solid Films. 2002. V. 412. P. 64–75. https://doi.org/10.1016/S0040-6090(02)00315-2
  6. Bessolov V.N., Karpov D.V., Konenkova E.V., Lipovskii A.A., Osipov A.V., Redkov A.V., Soshnikov I.P., Kukushkin S.A. Pendeo-epitaxy of stress-free AlN layer on a profiled SiC/Si substrate // Thin Solid Films. 2016. V. 606. P. 74–79. https://doi.org/10.1016/j.tsf.2016.03.034
  7. Кукушкин С.А. Эпитаксиальный карбид кремния на кремнии. Метод согласованного замещения атомов (Обзор) // Журнал общей химии. 2022. Т. 92. https://doi.org/10.31857/S0044460X22040023
  8. Masui H., Nakamura S., DenBaars S.P., Mishra U.K. Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges // IEEE Trans. Electron. Devices. 2010. V. 57. P. 88–100. https://doi.org/10.1109/TED.2009.2033773
  9. Takeuchi T., Amano H., Akasaki I. Theoretical Study of Orientation Dependence of Piezoelectric Effects in Wurtzite Strained GaInN/GaN Heterostructures and Quantum Wells // Jpn. J. Appl. Phys. 2000. V. 39. P. 413–416. https://doi.org/10.1143/JJAP.39.413
  10. Bessolov V.N., Konenkova E.V., Kukushkin S.A., Osipov A.V., Rodin S.N. Semipolar gallium nitride on silicon: technology and properties // Rev. Adv. Mater. Sci. 2014. V. 38. P. 75–93.
  11. Abe Y., Komiyama J., Isshiki T., Suzuki S., Yoshida A., Ohishi H., Nakanishi H. Semipolar Nitrides Grown on Si(001) Offcut Substrates with 3C-SiC Buffer Layers // Mater. Sci. Forum. 2008. V. 600–603. P. 1281–1284. https://doi.org/10.4028/www.scientific.net/MSF.600-603.1281
  12. Jo M., Hirayama H. Effects of Ga Supply on the Growth of (11-22) AlN on m-Plane (10-10) Sapphire Substrates // PSS (b). 2018. V. 255. P. 1700418. https://doi.org/10.1002/pssb.201700418
  13. Shen X.-Q., Kojima K., Okumura H. Single-phase high-quality semipolar (10–13) AlN epilayers on m-plane (10–10) sapphire substrates // Appl. Phys. Express. 2020. V. 13. P. 035502. https://doi.org/10.35848/1882-0786/ab7486
  14. Bessolov V., Kalmykov A., Konenkova E., Kukushkin S., Myasoedov A., Poletaev N., Rodin S. Semipolar AlN and GaN on Si(100): HVPE technology and layer properties // J. Cryst. Growth. 2017. V. 457. P. 202–206. https://doi.org/10.1016/j.jcrysgro.2016.05.025
  15. Lahourcade L., Bellet-Amalric E., Monroy E., Abouzaid M., Ruterana P. Plasma-assisted molecular-beam epitaxy of AlN(112-2) on m sapphire // Appl. Phys. Lett. 2007. V. 90. P. 131909. https://doi.org/10.1063/1.2716375
  16. Ueno K., Kobayashi A., Ohta J., Fujioka H., Amanai H., Nagao S., Horie H. Room temperature growth of semipolar AlN (1–102) films on ZnO (1–102) substrates by pulsed laser deposition // PSS (RRL) 2009. V. 3. P. 58–60. https://doi.org/10.1002/pssr.200802263
  17. Li X., Zhao J., Liu T., Lu Y., Zhang J. Growth of Semi-Polar (101¯3) AlN Film on M-Plane Sapphire with High-Temperature Nitridation by HVPE // Materials. 2021. V. 14. P. 1722. https://doi.org/10.3390/ma14071722
  18. Bessolov V., Kalmykov A., Konenkov S., Konenkova E., Kukushkin S., Myasoedov A., Osipov A., Panteleev V. Semipolar AlN on Si(100): Technology and properties // Microelectron. Eng. 2017. V. 178. P. 34–37. https://doi.org/10.1016/j.mee.2017.04.047
  19. Kukushkin S.A., Osipov A.V. Nanoscale Single-Crystal Silicon Carbide on Silicon and Unique Properties of This Material // Inorganic Materials. 2021. V. 57. P. 1319–1339. https://doi.org/10.1134/S0020168521130021
  20. Kukushkin S.A., Osipov A.V., Soshnikov I.P. Growth of epitaxial SiC layer on Si (100) surface of n- and p- type of conductivity by the atoms substitution method // Rev. Adv. Mater. Sci. 2017. V. 52. P. 29–42.
  21. Kalinkin I.P., Kukushkin S.A., Osipov A.V. Effect of Chemical Treatment of a Silicon Surface on the Quality and Structure of Silicon-Carbide Epitaxial Films Synthesized by Atom Substitution // Semiconductors. 2018. V. 52. P. 802–808. https://doi.org/10.1134/S1063782618060118
  22. Goldberg Y. Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe / Y. Goldberg, Eds. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. New York: John Wiley & Sons, 2001. 216 P.
  23. Jindal V., Shahedipour-Sandvik F. Theoretical prediction of GaN nanostructure equilibrium and nonequilibrium shapes // J. Appl. Phys. 2009. V. 106. P. 083115. https://doi.org/10.1063/1.3253575
  24. Markov I.V. Crystal Growth for Beginners. Singapore: Scientific, 2003. 546 p.
  25. Akiyama T., Nakane H., Nakamura K., Ito T. Effective approach for accurately calculating individual energy of polar heterojunction interfaces // Phys. Rev. B. 2016. V. 94. P. 115302. https://doi.org/10.1103/PhysRevB.94.115302
  26. Kukushkin S. New phase formation on solid surfaces and thin film condensation // Prog. Surf. Sci. 1996. V. 51. P. 1–107. https://doi.org/10.1016/0079-6816(96)82931-5
  27. Akiyama T., Nakane H., Uchino M., Nakamura K., Ito T. Structures and Polarity of III-Nitrides: Phase Diagram Calculations Using Absolute Surface and Interface Energies // PSS (b). 2018. V. 255. P. 1700329. https://doi.org/10.1002/pssb.201700329
  28. Abavare E.K.K., Iwata J.-I., Yaya A., Oshiyama A. Surface energy of Si(110)- and 3C-SiC(111)-terminated surfaces // PSS (b). 2014. V. 251. P. 1408–1415. https://doi.org/10.1002/pssb.201350335
  29. Sambonsuge S., Nikitina L.N., Hervieu Y.Y., Suemitsu M., Filimonov S.N. Silicon Carbide on Silicon (110): Surface Structure and Mechanisms of Epitaxial Growth // Russ. Phys. J. 2014. V. 56. P. 1439–1444. https://doi.org/10.1007/s11182-014-0197-7

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (319KB)
4.

下载 (815KB)
5.

下载 (226KB)
6.

下载 (49KB)
7.

下载 (386KB)
8.

下载 (62KB)

版权所有 © А.А. Корякин, С.А. Кукушкин, А.В. Осипов, Ш.Ш. Шарофидинов, М.П. Щеглов, 2023

##common.cookie##