Structural Optimization of a Longitudinally Moving Layered Web Based on a Multi-Criteria Approach

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The longitudinal motion at a constant speed of a thin continuous elastic web through a system of roller bearings under the action of a given constant tension is considered. One span between adjacent supports is considered. The web is modeled by a thin layered plate hinged on two opposite edges, the remaining two sides of the plate are free. It is assumed that the plate in the process of longitudinal movement can perform small transverse vibrations. The layers of the plate from a given set of materials are arranged symmetrically to the middle surface and fit tightly to each other. The total thickness of all layers is given and is small compared to the span length and plate width. Analytical expressions are derived for the effective characteristics of the plate, as a result of which the initial composite structure can be considered as an isotropic homogeneous plate, for which the known equations for calculating the critical velocity are applied. Within the framework of multi-criteria Pareto optimization, using a numerical method of non-local optimization, the order of the layers and their thickness are determined in order to satisfy a number of selected criteria: the maximum critical divergence rate, the maximum flexural stiffness, and the minimum unit weight of the layered web. An example of the found optimal structure of the plate and the constructed Pareto front for a given set of defining parameters of the problem are given.

Sobre autores

N. Banichuk

Ishlinsky Institute for Problems in Mechanics RAS

Email: syuivanova@yandex.ru
Moscow, 119526 Russia

S. Ivanova

Ishlinsky Institute for Problems in Mechanics RAS

Email: syuivanova@yandex.ru
Moscow, 119526 Russia

V. Afanas'ev

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: syuivanova@yandex.ru
Moscow, 119526 Russia

Bibliografia

  1. Banichuk N., Jeronen J., Neittaanmäki P., Saksa T., Tuovinen T. Mechanics of Moving Materials. Cham: Springer, 2014. 253 p.
  2. Banichuk N., Barsuk A., Jeronen J., Tuovinen T., Neittaanmäki P. Stability of axially moving materials. Cham, Switzerland: Springer, 2020. 642 p.
  3. Marynowski K. Dynamics of the Axially Moving Orthotropic Web. Lecture Notes in Applied and Computational Mechanics V. 38. Berlin, Heidelberg: Springer-Verlag, 2008. 154 p.
  4. Archibald F.R., Emslie A.G. The vibration of a string having a uniform motion along its length // ASME J. Appl. Mech. 1958. V. 25. № 3. P. 347–348. https://doi.org/10.1115/1.4011824
  5. Simpson A. Transverse modes and frequencies of beams translating between fixed end supports // J. Mech. Eng. Sci. 1973. V. 15. № 3. P. 159–164. https://doi.org/10.1243/JMES_JOUR_1973_015_031_02
  6. Banichuk N.V., Ivanova S.Y. Mathematical modelling of the axially moving panels subjected to thermomechanical actions // Mech. Based Des. Struct. Machin. 2018. V. 46. № 1. P. 101–109. https://doi.org/10.1080/15397734.2017.1289472
  7. Баничук Н.В., Афанасьев В.С., Иванова С.Ю. О статической бифуркации движущейся нагретой панели, обтекаемой идеальной жидкостью // Прикл. мат. мех. 2020. Т. 84. № 2. С. 234–241.
  8. Banichuk N., Ivanova S., Sinitsin A., Afanas’ev V. Optimization of axially moving layered web // EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. Springer, 2019. P. 657–665.
  9. Stadler W. Preference optimality and application of Pareto-optimality // Multicriteria decision making. CISM Courses and lectures / Ed. by Marzollo, Leitmann. Berlin: Springer, 1975. P. 125–225.
  10. Stadler W. Natural structural shapes (the static case) // Quarterly J. Mech. Appl. Math. 1978. V. 31. P. 169–217.
  11. Stadler W. Stability of the natural shapes of sinusoidally loaded uniform shallow arches // Quarterly J. Mech. Appl. Math. 1983. V. 34. P. 1–22.
  12. Eschenauer H.A. Numerical and experimental investigations on structural optimization of engineering design. Siegen, Bonn-Fries: Druckerei und Verlag, 1986. 309 p.
  13. Eschenauer H.A. Multicriteria optimization – Fundamental and motivation // Multicriteria design optimization / Ed. by: H. Eschenauer, J. Koski, A. Osyczka. Berlin: Springer-Verlag, 1990. P. 1–32.
  14. Stadler W. Multicriteria optimization in mechanics (A survey) // Appl. Mech. Rev. 1984. V. 37. № 3. P. 227–286.
  15. Multicriteria Optimization in Engineering and in the Sciences / Ed. by W. Stadler // Mathematical Concepts and Methods in Science and Engineering V. 37 / Ed. by A. Miele. N.Y.: Plenum Press, 1988. 406 p.
  16. Miettinen K.M. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers, 1999. 298 p.
  17. Banichuk N.V. Problems and Methods of Optimal Structural Design. New York: Plenum Press, 1983.
  18. Sinitsin A., Ivanova S., Makeev E., Banichuk N. Some problems of multipurpose optimization for deformed bodies and structures // Mathematical Modeling and Optimization of Complex Structures. Computational methods and applied sciences. Vol. 40. Springer Netherlands, 2016. P. 313–328.
  19. Баничук Н.В., Иванова С.Ю. Оптимизация: контактные задачи и высокоскоростное проникание. M.: Физматлит, 2016. 176 с.
  20. Goldberg D.E. Genetic Algorithm in Search, Optimization and Machine Learning. Westley Publ. Comp., 1989. 372 p.
  21. Periaux J., Gonzalez F., Lee D.S.C. Evolutionary optimization and game strategies for advanced multi-disciplinary design. Intelligent system, Control and Automation: Science and Engineering. V. 75. Dordrecht, Heidelberg: Springer, 2015. https://doi.org/10.1007/978-94-017-9520-3
  22. Periaux J., Greiner D. Efficient parallel nash genetic algorithm for solving inverse problems in structural engineering // Mathematical Modeling and Optimization of Complex Structures. Computational methods and applied sciences. V. 40. Springer Netherlands, 2016. P. 205–228.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (359KB)
3.

Baixar (22KB)
4.

Baixar (46KB)
5.

Baixar (78KB)
6.

Baixar (242KB)
7.

Baixar (30KB)

Declaração de direitos autorais © Н.В. Баничук, С.Ю. Иванова, В.С. Афанасьев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies