To the Static Stability of the Cross-Sectional Shape of a Pipeline, Cylindrical Shell, Carbon Nanotube

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

 Based on the assumption about the initial deformed shape of the cross section of the pipeline, cylindrical shell, carbon nanotube (CNT) without initial stresses, the critical pressures inside and outside these structural elements are determined. The static interaction of instabilities under the action of the above factors is studied.

Sobre autores

A. Khakimov

Mavlyutov Institute of Mechanics-Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: hakimov@anrb.ru
Ufa, 450054 Russia

Bibliografia

  1. Ильгамов М.А. Взаимодействие неустойчивостей Эйлера, Гельмгольца, Релея // ЖТФ. 2018. Т. 63. № 2. С. 163–167. https://doi.org/10.21883/JTF.2018.02.45401.2144
  2. Дяченко И.А., Миронов А.А. Аналитические и численные исследования свободных колебаний цилиндрических оболочек с акустической средой // Проблемы прочности и пластичности. 2021. Т. 83. № 1. С. 35–48. https://doi.org/10.32326/1814-9146-2021-83-1-35-48
  3. Leizerovich G.S., Taranukha N.A. Nonobvious features of dynamics of circular cylindrical shells // Mech. Solids. 2008. V. 43. № 2. P. 246–253. https://doi.org/10.3103/S0025654408020106
  4. Rawat A., Matsagar V., Nagpal A. Finite element analysis of thin circular cylindrical shells // Proc. Indian Nat. Sci. Acad. 2016. V. 82. № 2. P. 349–355. https://doi.org/10.16943/ptinsa/2016/48426
  5. Farshidianfar A., Oliazadeh P. Free vibration analysis of circular cylindrical shells: comparison of different shell theories // Int. J. Mech. Appl. 2012. V. 2. № 5. P. 74–80. https://doi.org/10.5923/j.mechanics.20120205.04
  6. Bleich H.H., Baron M.L. Free and Forced vibration of an infinitely long cylindrical shell in an infinite acoustic medium // J. Appl. Mech. Trans. ASME. 1954. V. 21. № 2. P. 167–177.
  7. O’Connell A.D., Hofheinz M., Ansmann Mю et al. Quantum ground state and single-phonon control of a mechanical resonator // Nature. 2010. V. 464. P. 697–703. https://doi.org/10.1038/nature08967
  8. Burg T.P., Godin M., Knudsen S.M. et al. Weighing of biomolecules, single cells and single nanopar- ticles in f luid // Nature. 2007. V. 446. P. 1066–1069. https://doi.org/10.1038/nature05741
  9. Husale S., Persson H.H.J., Sahin O. DNA nanomechanics allows direct digital detection of comple- mentary DNA and microRNA targets // Nature. 2009. V. 462. P. 1075–1078. https://doi.org/10.1038/nature08626
  10. Sirenko Y.M., Stroscio M.A., Kim K.W. Elastic vibrations of microtubules in a fluid // Phys. Rev. V. 53. № 1. 1996. P. 1003–1010.
  11. Аннин Б.Д., Алехин В.В., Бабичев А.В., Коробейников С.Н. Применение метода молекулярной механики к задачам устойчивости и собственных колебаний однослойных углеродных нанотрубок // Изв. РАН. МТТ. 2012. № 5. С. 65–83.
  12. Chen Y., Alba M., Tieu T., Tong Z., Minhas R.S., Rudd D., Voelcker N.H., Cifuentes-Rius A., and Elnathan R. Engineering Micro-Nanomaterials for Biomedical Translation // Adv. NanoBiomed Res. 2021. № 1. P. 2100002. https://doi.org/10.1002/anbr.202100002
  13. Ильгамов М.А. Влияние давления окружающей среды на изгиб тонкой пластины и пленки // ДАН. 2017. Т. 476. № 4. С. 402–405.
  14. Ильгамов М.А. Влияние поверхностных эффектов на изгиб и колебания нанопленок // ФТТ. 2019. Т. 61. № 10. С. 1825–1830.
  15. Ilgamov M.A., Khakimov A.G. Influence of pressure on the frequency spectrum of micro and nanoresonators on hinged supports // J. Appl. Comput. Mech. 2021. V. 7. № 2. P. 977–983. https://doi.org/10.22055/JACM.2021.36470.2848
  16. Дмитриев С.В., Сунагатова И.Р., Ильгамов М.А., Павлов И.С. Собственные частоты радиальных колебаний углеродных нанотрубок // ЖТФ. 2021. Т. 91. Вып. 11. С. 1732–1737. https://doi.org/10.21883/JTF.2021.11.51536.127-21
  17. Dmitriev S.V., Semenov A.S., Savin A. ., Ilgamov M.A., Bachurin D.V. Rotobreather in a carbon nanotube bundle // Journal of Micromechanics and Molecular Physics 2021, 2050010. https://doi.org/10.1142/S2424913020500101
  18. Елецкий А.В. Механические свойства углеродных нанотрубок и материалов на их основе // Усп. физ.наук. 2007. Т. 177. № 3. С. 233–274.
  19. Harik V.M. Ranges of applicability for the continuum beam model in the mechanics of carbon nanotubes and nanorods // Solid State Commun. 2001. V. 120. P. 331–335. https://doi.org/10.1016/S0038-1098(01)00383-0
  20. Qian D., Wagner G.J., Lin W.K., Ju M.F., Ruoff R.S. Mechanics of carbon nanotubes // Appl. Mech. Rev. 2002. V. 55. № 6. P. 495–532. https://doi.org/10.1115/1.1490129
  21. Timoshenko S.P., Young D.H., Weaver W. Vibration Problems in Engineering. New York: John Wiley & Sons, 1974.
  22. Wu J., Zang J., Larade B., Guo H., Gong X.G., Liu F. Computational design of carbon nanotube electromechanical pressure sensors // Phys. Rev. B. 2004. V. 69. P. 153406. https://doi.org/10.1103/PhysRevB.69.153406
  23. Bi K., Hao H. Using pipe-in-pipe systems for subsea pipeline vibration control // Eng. Struct. 2016. V. 109. P. 75–84. https://doi.org/10.1016/j.engstruct.2015.11.018
  24. Davaripour F., Quinton B.W.T., Pike K. Effect of damage progression on the plastic capacity of a subsea pipeline // Ocean Eng. 2021. V. 234. https://doi.org/10.1016/j.oceaneng.2021.109118
  25. Cheng A., Chen N.-Z. Corrosion fatigue crack growth modelling for subsea pipeline steels // Ocean Eng. 2017. V. 142. P. 10–19. https://doi.org/10.1016/j.oceaneng.2017.06.057

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (59KB)
3.

Baixar (19KB)
4.

Baixar (23KB)
5.

Baixar (49KB)

Declaração de direitos autorais © А.Г. Хакимов, 2022

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies