Measurement of elastic characteristics of single-crystals of a nickel-base superalloy by speckle interferometry
- Авторлар: Epishin А.I.1, Odintsev I.N.2, Lisovenko D.S.3, Petrushin N.V.4, Svetlov I.L.4
-
Мекемелер:
- Merzhanov Institute of Structural Macrokinetics and Materials Science RAS
- Mechanical Engineering Research Institute RAS
- Ishlinsky Institute for Problems in Mechanics RAS
- All-Russin Research Institute of Aviation Materials (VIAM) NRC “Kurchatov Institute”
- Шығарылым: № 6 (2024)
- Беттер: 187-204
- Бөлім: Articles
- URL: https://journals.rcsi.science/1026-3519/article/view/281295
- DOI: https://doi.org/10.31857/S1026351924060114
- EDN: https://elibrary.ru/TYSAPR
- ID: 281295
Дәйексөз келтіру
Аннотация
The elastic properties of single crystals of a nickel-base superalloy VGM7 have been investigated by speckle interferometry. Plate-shaped specimens of different crystallographic orientations were loaded under pure shear conditions and speckle interference patterns were imaged. Numerical processing of the interference patterns allowed us to determine the values of Young’s modulus in directions [001] and [011], = 138 GPa and = 241 GPa, the basic value of Poisson’s ratio = 0.39 in the coordinate system ⟨001⟩, as well as its minimum and maximum values = −0.10 and = 0.69 under longitudinal loading along [101] and transverse deformation along [10] and [010], respectively. Using the measured values , , , and the single-crystal elastic stiffnesses = 264 GPa, = 166 GPa and = 133 GPa, and elastic compliances = 7.35 TPa–1, = –2.84 TPa–1 and = 7.52 TPa–1 we calculated. The applied method allows one to unambiguously determine the sign of Poisson’s ratio and, therefore, it should be recommended for studying the elastic properties of auxetic materials, for which determination of the sign of Poisson’s ratio is of great importance.
Негізгі сөздер
Толық мәтін

Авторлар туралы
А. Epishin
Merzhanov Institute of Structural Macrokinetics and Materials Science RAS
Хат алмасуға жауапты Автор.
Email: a.epishin2021@gmail.com
Ресей, Chernogolovka, Moscow Region
I. Odintsev
Mechanical Engineering Research Institute RAS
Email: a.epishin2021@gmail.com
Ресей, Moscow
D. Lisovenko
Ishlinsky Institute for Problems in Mechanics RAS
Email: lisovenk@ipmnet.ru
Ресей, Moscow
N. Petrushin
All-Russin Research Institute of Aviation Materials (VIAM) NRC “Kurchatov Institute”
Email: a.epishin2021@gmail.com
Ресей, Moscow
I. Svetlov
All-Russin Research Institute of Aviation Materials (VIAM) NRC “Kurchatov Institute”
Email: a.epishin2021@gmail.com
Ресей, Moscow
Әдебиет тізімі
- Köster W., Franz H. Poisson’s ratio for metals and alloys // Metallurgical Reviews. 1961. V. 6. № 21. P. 1–55. https://doi.org/10.1179/mtlr.1961.6.1.1
- Epishin A.I., Lisovenko D.S. Influence of the crystal structure and type of interatomic bond on the elastic properties of monatomic and diatomic cubic crystals // Mech. Solids. 2022. V. 57. № 6. P. 1344–1358. https://doi.org/10.3103/S0025654422060206
- Evans K., Nkansah M., Hutchinson I., Rogers S.C. Molecular network design // Nature. 1991. V. 353. № 6340. P. 124–125. https://doi.org/10.1038/353124a0
- Gorodtsov V.A., Lisovenko D.S. Auxetics among materials with cubic anisotropy // Mech. Solids. 2020. V.55. № 4. P. 461–474. https://doi.org/10.3103/S0025654420040044
- Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A. Negative Poisson’s ratio for cubic crystals and nano/microtubes // Phys. Mesomech. 2014. V. 17. № 2. P. 97–115. http://dx.doi.org/10.1134/S1029959914020027
- Epishin A.I. Structure, anisotropy of physico-mechanical properties and mechanisms of high-temperature creep of single crystals of heat-resistant nickel alloys: dissertation, PhD, Moscow: MISiS 2007. (In Russian)
- Epishin A.I., Lisovenko D.S. Extreme values of Poisson’s ratio of cubic crystals // Technical Physics. 2016. V. 61. № 10. P. 1516–1524. http://dx.doi.org/10.1134/S1063784216100121
- Wiederhorn S.M., Fields R.J. Measurement methods for materials properties: Elasticity, Handbook of Measurement Methods. Springer-Verlag, 2017. https://www.nist.gov/publications/measurement-methods-materials-properties-elasticity (Accessed September 4, 2024).
- Bell J.F. The Experimental foundations of solid mechanics. Mechanics of Solid. V. 1. Springer. 1973.
- Svetlov I.L., Epishin A.I., Krivko A.I. et al. Anisotropy of Poisson ratio of nickel base alloy single crystals // Dokl. Akad. Nauk SSSR. 1988. V. 302. № 6. P. 1372–1375.
- Swain D., Thomas B.P., Selvan S.K. and Philip J. Measurement of elastic properties of materials employing 3-D DIC in a Cornu’s experiment // Mater. Res. Express. 2021. V. 8. P. 125201. https://doi.org/10.1088/2053-1591/ac452d
- Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monocrystalline heat-resistant nickel alloy of a new generation with low density // Aviation Materials and Technologies. 2015. № 2. P. 14–25. (In Russian) https://doi.org/10.18577/2071-9140-2015-0-2-14-25
- Kablov E.N., Petrushin N.V. Computer method of designing foundry heat-resistant nickel alloys // Foundry heat-resistant alloys. The S.T. Kishkin effect. M.: Nauka, 2006. P. 56–78. (In Russian)
- Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Development of technologies and equipment for producing blades of the hot path of gas turbine engines from heat-resistant alloys with directional and monocrystalline structure // Proceedings of VIAM. 2023. № 7 (125). Article 01. (In Russian) https://doi.org/10.18577/2307-6046-2023-0-7-3-14
- Müller L., Glatzel U., Feller-Kniepmeier M. Modelling thermal misfit stresses in nickel-base superalloys containing high volume fraction of γ′ phase // Acta Metall. Mater. 1992. V. 40. № 6. P. 1321-1327. https://doi.org/10.1016/0956-7151(92)90433-F
- Kuzmina N.A., Pyankova L.A. Control of the crystallographic orientation of single-crystal castings of nickel-base superalloys by X-ray diffractometry // Proceedings of VIAM. 2019. № 12 (84). P. 11–19. (In Russian) https://doi.org/10.18577/2307-6046-2019-0-12-11-19
- Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraia V.N., Gavrilin O.S. Single crystals of nickel-base superalloys. Moscow: Mashinostroenie. 1997. 333 P. (In Russian)
- Timoshenko S.P., Voinowsky-Krieger S. Theory of plates and shells. McGraw-Hills 1959. 580 p.
- Lehknitskii S.R. Theory of elasticity of an anisotropic body. NY: Dover Publications, 1981.
- Razumovsky I.A. Interference-optical methods of deformable solid mechanics. M. Bauman Moscow State Technical University, 2007. 240 P. (In Russian)
- Odintsev I.N. Development and application of the methodology of coherent optics to the study of deformation properties of structural materials. The abstract. Dissertation of the Candidate of Technical Sciences (In Russian) https://new-disser.ru/_avtoreferats/01003421090.pdf
- Epishin A.I., Lisovenko D.S. Comparison of isothermal and adiabatic elasticity characteristics of the single crystal nickel-based superalloy CMSX-4 in the temperature range between room temperature and 1300 °C // Mech. Solids. 2023. V. 58. № 5. P. 1587–1598. https://doi.org/10.3103/S0025654423601301
- Alers G.A., Neighbours J.R., Sato H. Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy // J. Phys. Chem. Solids. 1960. V. 13. № 1–2. P. 40–55. https://doi.org/10.1016/0022-3697(60)90125-6.
- Prikhodko S.V., Yang, H., Ardell, A.J. et al. Temperature and composition dependence of the elastic constants of Ni3Al // Metall. Mater. Trans. A. 1999. V. 30. P. 2403–2408. https://doi.org/10.1007/s11661-999-0248-9
- Svetlov I.L., Sukhanov N.N., Krivko A.I., etc. The temperature-orientation dependence of the characteristics of short-term strength, Young’s modulus and the coefficient of linear expansion of single crystals of the ZHS6F alloy // Problems of strength. 1987. № 1. P. 51–56. (In Russian)
- Solovyov A.E., Golynets S.A., Khvatsky K.K. Anisotropy of tensile elasticity characteristics of monocrystalline heat-resistant nickel alloys // Proceedings of VIAM. 2017. № 10 (58). P. 112–118. (In Russian) https://doi.org/10.18577/2307-6046-2017-0-10-12-12
- Epishin A., Fedelich B., Finn M. et al. I. Investigation of elastic properties of the single-crystal nickel-base superalloy CMSX-4 in the temperature interval between room temperature and 1300 °C // Crystals 2021. V. 11. №. 2. P. 152. https://doi.org/10.3390/cryst11020152
- Siebörger D., Knake H., Glatzel U. Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases // Mater. Sci. Eng. A. 2001. V. 298. № 1–2, P. 26–33. https://doi.org/10.1016/S0921-5093(00)01318-6
- Kuhn H.-A., Sockel H. G. Contributions of the different phases of two nickel-base superalloys to the elastic behaviour in a wide temperature range // Phys. Stat. Sol. A. 1990. V. 119. P. 93–105. https://doi.org/10.1002/pssa.2211190112
- Demtröder K., Eggeler G., Schreuer J. Influence of microstructure on macroscopic elastic properties and thermal expansion of nickel-base superalloys ERBO/1 and LEK94 // Mat.-wiss. u. Werkstofftech. 2015. V. 46. № 6. P. 563–576. https://doi.org/10.1002/mawe.201500406
- Yang S.W. Elastic constants of a monocrystalline nickel-base superalloy // Metall. Trans. A. 1985. V. 16. P. 661–665. https://doi.org/10.1007/BF02814240
Қосымша файлдар
