Extra-pair paternity in the Wood Warbler (Phylloscopus sibilatrix) in Central Russia

封面

如何引用文章

全文:

详细

Extra-pair paternity is widespread in passerine birds. The number of extra-pair young (EPY) varies among different species and populations of the same species. We tested if it is a case for a small passerine bird with poly-territorial behaviour, the Wood Warbler (Phylloscopus sibilatrix). The results are based on the microsatellite analysis of seven loci and revealed a high level of EPY in Central Russia population of Wood Warbler (EPY in 41% of all nests, 16 of 39 nests; 25% of all young were EPY, 52 of 212 young). We did not find relationship between relatedness among mates in the pair and the presence of EPY. There was no difference in heterozygosity and body mass between EPY and within pair young (WPY). Possible causes of extra-pair paternity are discussed.

全文:

受限制的访问

作者简介

M. Goretskaia

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: m.goretskaia@gmail.com

Zvenigorod Biological Station, Biological Faculty

俄罗斯联邦, Leninskiye Gory, Moscow, 119991

Yu. Belokon

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: m.goretskaia@gmail.com
俄罗斯联邦, Gubkin st. 3, Moscow, 119991

M. Belokon

Vavilov Institute of General Genetics Russian Academy of Sciences

Email: m.goretskaia@gmail.com
俄罗斯联邦, Gubkin st. 3, Moscow, 119991

参考

  1. Горецкая М.Я., Гаврилов В.В. Численность и территориальная структура популяции пеночки-трещотки (Phylloscopus sibilatrix) на Звенигородской биостанции МГУ за 2000–2016 гг. // Динамика численности птиц в наземных ландшафтах. 2017. С. 204–206.
  2. Akçay E., Roughgarden J. Extra-pair paternity in birds: Review of the genetic benefits // Evol. Ecol. Res. 2007. V. 9. P. 855–868. https://repository.upenn.edu/biology_papers/12
  3. Albrecht T., Kreisinger.J, Piálek J. The strength of direct selection against female promiscuity is associated with rates of extrapair fertilizations in socially monogamous songbirds // Am. Nat. 2006. V. 167. P. 739–744. https://doi.org/10.1086/502633
  4. Arct A., Drobniak S.M., Podmokła E., Gustafson L., Cichoń M. Benefits of extra-pair mating may depend on environmental conditions – an experimental study in the Blue Tit (Cyanistes caeruleus) // Behav. Ecol. Sociobiol. 2013. V. 67. P. 1809–1815. https://doi.org/10.1007/s00265-013-1588-4
  5. Arct A., Drobniak S.M., Cichoń M. Genetic similarity between mates predicts extrapair paternity – a meta-analysis of bird studies // Behav. Ecol. 2015. V. 26. P. 959–968. https://doi.org/10.1093/beheco/arv004
  6. Bensch S., Price T., Kohn J. Isolation and characterization of microsatellite loci in a Phylloscopus warbler // Mol. Ecol. 1997. V. 6. P. 91–92. https://doi.org/10.1046/j.1365-294X.1997.00150.x
  7. Brouwer L., van de Pol M., Aranzamendi N.H., Bain G., Baldassarre D.T., Brooker L.C., Brooker M.G., Colombelli-Négrel D., Enbody E., Gielow K., Hall M.L., Johnson A.E., Karubian J., Kingma S.A., Kleindorfer S., Louter M., Mulder R.A., Peters A., Pruett-Jones S., Tarvin K.A., Thrasher D.J., Varian-Ramos C.W., Webster M.S., Cockburn A. Multiple hypotheses explain variation in extra-pair paternity at different levels in a single bird family // Mol. Ecol. 2017 (published online). https://doi.org/https://doi.org/10.1111/mec.14385
  8. Cassey P., Ewen J.G., Møller A.P. Revised evidence for facultative sex ratio adjustment in birds: a correction // Proc. Biol. Sci. 2006. V. 273. P. 3129–3130. https://doi.org/10.1098/rspb.2006.3628
  9. Canal D., Potti J.A., Davilla J. Male phenotype predicts extra-pair paternity in Pied Flycatchers // Behav. 2011. V. 148. P. 691–712. https://doi.org/10.1163/000579511X573917
  10. Charmantier A., Blondel J., Perret P., Lambrechts M.M. Do extra-pair paternities provide genetic benefits for female Blue Tits Parus caeruleus? // J. Avian. Biol. 2004. V. 35. P. 524–532. https://doi.org/10.2307/3677557
  11. Dawson D.A., Hanotte O., Greig C., Stewart I.R., Burke T. Polymorphic microsatellites in the Blue Tit Parus caeruleus and their cross-species utility in 20 songbird families // Mol. Ecol. 2000. V. 9. P. 1941–1944. https://doi.org/10.1046/j.1365-294x.2000.01094-14.x
  12. Dreiss A.N., Navarro C., De Lope F., Møller A.P. Effects of an immune challenge on multiple components of song display in Barn Swallows Hirundo rustica: implications for sexual selection // Ethology 2008. V. 114. P. 955–964. https://doi.org/10.1111/J.1439-0310.2008.01546.X
  13. Edly-Wright C., Schwagmeyer P.L., Parker P.G., Mock D.W. Genetic similarity of mates, offspring health and extrapair fertilization in House Sparrows // Anim. Behav. 2007. V. 73. P. 367–378. https://doi.org/10.1016/j.anbehav.2006.08.008
  14. Ellegren H., Gustafsson L., Sheldon B.C. Sex ratio adjustment in relation to paternal attractiveness in a wild bird population // Proc. Natl. Acad. Sci. USA. 1996. V. 93. P. 11723–11728. https://doi.org/10.1073/pnas.93.21.11723
  15. Ewen J.G., Cassey P., Møller A.P. Facultative primary sex ratio variation: a lack of evidence in birds // Proc. R. Soc. Lond. B. Biol. Sci. 2004. V. 271. P. 1277–1282. https://doi.org/10.1098/rspb.2004.2735
  16. Foerster K., Delhey K., Johnsen A., Lifjeld J.T., Kempenaers B. Females increase offspring heterozygosity and fitness through extra-pair matings // Nature. 2003. V. 425. P. 714–717. https://doi.org/10.1038/nature01969
  17. Forstmeier W., Kempenaers B., Meyer A., Leisler B. A novel song parameter correlates with extra-pair paternity and reflects male longevity // Proc. R. Soc. B. Biol. Sci. 2002. V. 269. P. 1479–1485. https://doi.org/10.1098/rspb.2002.2039
  18. Forstmeier W., Nakagawa S., Griffith S.C., Kempenaers B. Female extra-pair mating: adaptation or genetic constraint? // Trends Ecol. Evol. 2014. V. 29. P. 456–464. https://doi.org/10.1016/j.tree.2014.05.005
  19. Fossøy F., Johnsen A., Lifjeld J.T. Multiple genetic benefits of female promiscuity in a socially monogamous passerine // Evolution (N. Y.). 2007. V. 62. P. 145–156. https://doi.org/10.1111/j.1558-5646.2007.00284.x
  20. Gelter H.P., Tegelström H. High frequency of extra-pair paternity in Swedish Pied Flycatchers revealed by allozyme electrophoresis and DNA fingerprinting // Behav. Ecol. Sociobiol. 1992. V. 31. P. 1–7. https://doi.org/10.1007/BF00167810
  21. Gil D., Slater P.J.B., Graves J.А. Extra-pair paternity and song characteristics in the Willow Warbler Phylloscopus trochilus // J. Avian Biol. 2007. V. 38. P. 291–297. https://doi.org/10.1111/j.2007.0908-8857.03868.x
  22. Griffiths R., Double M.C., Orr K., Dawson R.J.G. A DNA test to sex most birds // Molecular Ecology. 1998. V. 7. P. 1071–1075.
  23. Griffith S.C., Immler S. Female infidelity and genetic compatibility in birds: the role of the genetically loaded raffle in understanding the function of extra-pair paternity // J. Avian Biol. 2009. V. 40. P. 97–101. https://doi.org/10.1111/j.1600-048X.2009.04562.x
  24. Griffith S.C., Ornborg J., Russell A.F., Andersson S., Sheldon B.C. Correlations between ultraviolet coloration, overwinter survival and offspring sex ratio in the blue tit // J. Evol. Biol. 2003. V. 16. P. 1045–1054. https://doi.org/10.1046/j.1420-9101.2003.00550.x.
  25. Griffith S.C., Owens I.P.F., Thuman K.A. Extra pair paternity in birds: a review of interspecific variation and adaptive function // Mol. Ecol. 2002. V. 11. P. 2195–2212. https://doi.org/10.1046/j.1365-294X.2002.01613.x
  26. Gyllensten U.B., Jakobsson S., Temrin H. No evidence for illegitimate young in monogamous and polygynous warblers // Lett. To Nat. 1990. V. 346. P. 183–187. https://doi.org/10.1038/343168a0
  27. Hasselquist D., Bensch S., von Schantz T. Correlation between male song repertoire, extra-pair paternity and offspring survival in the great reed warbler // Nature 1996. V. 381. P. 229–232. https://doi.org/10.1038/381229a0
  28. Hsu Y-H., Schroeder J., Winney I., Burke T., Nakagawa S. Are extra-pair males different from cuckolded males? A case study and a meta-analytic examination // Mol. Ecol. 2015. V. 24. P. 1558–1571. https://doi.org/10.1111/mec.13124
  29. Jones A.G. GERUD2.0: a computer program foe the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents // Mol. Ecol. Notes. 2005. V. 5. P. 708–711. https://doi.org/10.1111/j.1471-8286.2005.01029.x
  30. Jennions M.D., Petrie M. Why do females mate multiply? A review of the genetic benefits // Biol Rev. 2000. V. 75. P. 21–64. https://doi.org/10.1017/S0006323199005423
  31. Johnsen A., Andersen V., Sunding C., Lifjeld J.T. Female Bluethroats enhance offspring immunocompetence through extra-pair copulations // Nature. 2000. V. 406. P. 296–299. https://doi.org/.1038/35018556
  32. Kempenaers B., Verheyen G.R., Dhondi A.A. Extrapair paternity in the Blue Tit (Parus caeruleus): female choice, male charateristics, and offspring quality // Behav. Ecol. 1997. V. 8. P. 481–492. https://doi.org/10.1093/beheco/8.5.481
  33. Keller L.F., Waller D.M. Inbreeding effects in wild populations // Trends Ecol. Evol. 2002. V. 17. P. 230–241. https://doi.org/10.1016/S0169-5347(02)02489-8
  34. Kleven O., Lifjeld J.T. No evidence for increased offspring heterozygosity from extrapair mating in the Reed Bunting (Emberiza schoeniclus) // Behav. Ecol. 2005. V. 16. P. 561–565. https://doi.org/10.1093/beheco/ari027
  35. Leder E.H., Karaiskou N., Primmer C.R. Seventy new microsatellites for the Pied Flycatcher, Ficedula hypoleuca and amplification in other passerine birds // Mol. Ecol. Resour. 2008. V. 8. P. 874–880. https://doi.org/10.1111/j.1755-0998.2008.02096.x
  36. Magrath M.J.L., Vedder O., van der Velde M., Komdeur J. Maternal effects contribute to the superior performance of extra-pair offspring // Curr. Biol. 2009. V. 19. P. 792–797. https://doi.org/10.1016/j.cub.2009.03.068
  37. Møller A.P., Erritzøe J. Climate, body condition and spleen size in bird // Oecologia. 2003. V. 137. P. 621–626. https://doi.org/10.1007/s00442-003-1378-1
  38. Nakagawa S., Schroeder J., Burke T. Sugar-free extrapair mating: a comment on Arct et al. // Behav. Ecol. 2015. V. 26. P. 971–972. https://doi.org/10.1093/BEHECO/ARV041
  39. Neff B.D., Pitcher T.E. Genetic quality and sexual selection: an integrated framework for good genes and compatible genes // Mol Ecol. 2005. V. 14. P. 19–38. https://doi.org/10.1111/j.1365-294X.2004.02395.x
  40. Peakall R., Smouse P.E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research // Mol. Ecol. Notes. 2006. V. 6. P. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  41. Peakall R., Smouse P.E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update // Bioinformatics 2012. V. 28. P. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
  42. Petrie M., Kempenaers B. Extra-pair paternity in birds: explaining variation between species and populations // Trends Ecol. Evol. 1998. V. 13. P. 52–58. https://doi.org/10.1016/S0169-5347(97)01232-9
  43. Pinheiro J., Bates D., DebRoy S., Sarkar D. R Core Team. Nlme: linear and nonlinear mixed effects models. R package version 3.1–137, 2018. https://CRAN.R-project.org/package=nlme
  44. Pipoly I., Bókony V., Kirkpatrick M., Donald P.F., Székely T., Liker A. The genetic sex-determination system predicts adult sex ratios in tetrapods // Nature. 2015. V. 527. P. 91–94.
  45. Primmer C., Møller A., Ellegren H. New microsatellites from the Pied Flycatcher Ficedula hypoleuca and the Swallow Hirundo rustica genomes // Hereditas 1996. V. 124. P. 281–284. https://doi.org/10.1038/nature15380
  46. Richardson D.S., Jury F.L., Blaakmeer K., Komdeur J., Burke T. Parentage assignment and extra-group paternity in a cooperative breeder: The Seychelles Warbler (Acrocephalus sechellensis) // Mol. Ecol. 2001. V. 10. P. 2263–2273. https://doi.org/10.1046/j.0962-1083.2001.01355.x
  47. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing // Vienna, Austria. 2021. URL https://www.R-project.org/
  48. Queller D.C., Goodnight K.F. Estimating relatedness using molecular markers // Evolution. 1989. V. 43. P. 258–275. https://doi.org/10.1111/j.1558-5646.1989.tb04226.x
  49. Santos E.S.A., Santos L.L.S., Lagisz M., Nakagawa S. Conflict and cooperation over sex: the consequences of social and genetic polyandry for reproductive success in Dunnocks // J Anim. Ecol. 2015. V. 84. P. 1509–1519. https://doi.org/10.1111/1365–2656.12432
  50. Sheldon B.C., Merilo J., Qvarnstrom A., Gustafsson L., Ellegren H. Paternal genetic contribution to offspring condition predicted by size of male secondary sexual character // Proc. R. Soc. B. Biol. Sci. 1997. V. 264. P. 297–302. https://doi.org/10.1098/rspb.1997.0042
  51. Schlicht L., M. Valcu, B. Kempenaers B. Male extraterritorial behaviour predicts extrapair paternity pattern in blue tits, Cyanistes caeruleus // Behav. Ecol. 2015. V. 26. P. 1404–1413.
  52. Suter S.M., Keiser M., Feignoux R., Meyer D.R. Reed Bunting females increase fitness through extra-pair mating with genetically dissimilar males // Proc. R. Soc. B. Biol. Sci. 2007. V. 274. P. 2865–2871. https://doi.org/10.1098/rspb.2007.0799
  53. Strohbach S., Curio E., Bathen A., Epplen J.T., Lubjuhn T. Extra-pair paternity in the great tit (Parus major): a test of the “good genes” hypothesis // Behav. Ecol. 1998. V. 9. P. 388–396.
  54. Temrin H., Brodin A., Åkerström O., Stenius S. Parental investment in monogamous pairs of Wood Warblers (Phylloscopus sibilatrix) // J. Ornithol. 1997. V. 138. P. 93–101. https://doi.org/10.1007/BF01651655
  55. Temrin H. Why are some Wood Warbler (Phylloscopus sibilatrix) males polyterritorial // Ann. Zool. Fennici. 1984. V. 21. P. 243–247.
  56. Tregenza T., Wedell N. Genetic compatibility, mate choice and patterns of parentage: invited review // Mol. Ecol. 2000. V. 9. P. 1013–1027. https://doi.org/10.1046/j.1365-294x.2000.00964.x
  57. Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes 2004. V. 4. P. 535–538. https://doi.org/10.1111/j.1471–8286.2004.00684.x
  58. Zuur A.F., Ieno E.N., Walker N.J., Saveliev A.A., Smith G.M. Mixed effects models and extensions in ecology with R. Springer, 2009. 574 p. https://doi.org/10.18637/jss.v032.b01
  59. Westerdahl H., Bensch S., Hansson B., Hasselquist D., von Schantz T. Brood sex ratios, female harem status and resources for nestling provisioning in the great reed warbler (Acrocephalus arundinaceus) // Behav. Ecol. Sociobiol. 2000. V. 47. P. 312–318. https://doi.org/10.1007/s002650050671

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Occurrence of EPY in nests

下载 (85KB)
3. Fig. 2. Coefficient of relatedness (QGM) between a male and a female in a pair for families in which there are no illegitimate descendants (0) and for families with illegitimate descendants (1). Median, maximum and minimum shown

下载 (93KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##