Анализ геномов двух бактериобионтов лишайников, Lichenibacterium ramalinae и Lichenibacterium minor: факторы вирулентности и адаптации

Обложка

Цитировать

Полный текст

Аннотация

Успешные инвазия и адаптация бактерий в лишайниковый симбиоз требует вовлечения ряда физиологических механизмов, которые регулируют взаимодействия между бактериобионтами, микобионтами и альгобионтами и обеспечивают оптимизацию роста и развития таллома. Для выявления таких факторов был проведен анализ геномов двух бактериобионтов лишайников Lichenibacterium ramalinae и L. minor. Традиционные для ризобий гены нодуляции nod не обнаружены. Высказано предположение о выполнении сходной функции белком TIGR02302. Обнаружены гены, кодирующие белки, связанные с реализацией программ планктонного и биопленочного фенотипа – флагеллины и пилины. Эти гены имеют высокий уровень сходства с генами бактерий – симбионтов растений. В геномах исследованных бактерий обнаружены генетические детерминанты факторов вирулентности – белков инвазии локуса B, integration host factor (IHF), cенсорных гистидин киназ, белков рецепции и транспорта сидерофоров, монооксигеназы синтеза антибиотиков (Abm). Перечисленные гены имеют сходство с таковыми у организмов, образующих ассоциации разной степени связанности с растениями. Полученные данные позволили укрепить ранее высказанное предположение о приоритетной ассоциации бактерий семейства Lichenibacteriaceae c зелеными водорослями лишайников.

Об авторах

Т. А. Панкратов

Институт микробиологии им. С.Н. Виноградского, ФИЦ “Биотехнологии” РАН

Автор, ответственный за переписку.
Email: tpankratov@gmail.com
Россия, 119071, Москва

Список литературы

  1. Bi H., Zhang Ch. Integration host factor is required for the induction of acid resistance in Escherichia coli // Curr. Microbiol. 2014. V. 69. P. 218–224. https://doi.org/10.1007/s00284-014-0595-7
  2. Coleman S.A., Minnick M.F. Differential expression of the invasion-associated locus B (ialB) gene of Bartonella bacilliformis in response to environmental cues // Microb. Pathog. 2003. V. 34. P. 179–186. https://doi.org/10.1016/S0882-4010(03)00005-6
  3. Coleman S.A., Minnick M.F. Establishing a direct role for the Bartonella bacilliformis invasion-associated locus B (IalB) protein in human erythrocyte parasitism // Infect. Immun. 2001. V. 69(7). P. 4373–4381.
  4. Dutta A., Batish M., Parashar V. Structural basis of KdpD histidine kinase binding to the second messenger c-di-AMP // J Biol Chem. 2021. V. 296:100771. https:// doi.org/https://doi.org/10.1016/j.jbc.2021.100771
  5. Erlacher A., Cernava T., Cardinale M., Soh J., Sensen C.W., Grube M., Berg G. Rhizobiales as functional and endosymbiotic members in the lichen symbiosis of Lobaria pulmonaria L. // Front. Microbiol. 2015. V 6: article 53. https://doi.org/10.3389/fmicb.2015.00053
  6. Gallego V., García M.T., Ventosa A. Methylobacterium variabile sp. nov., a methylotrophic bacterium isolated from an aquatic environment // Int. J. Syst. Evol. Microbiol. 2005. V. 55(4). P. 1429–1433. https://doi.org/10.1099/ijs.0.63597-0
  7. Gondim A.C.S., Guimarães W.G., Sousa E.H.S. Heme-based gas sensors in nature and their chemical and biotechnological applications // BioChem. 2022. V. 2. P. 43–63. https://doi.org/10.3390/biochem2010004
  8. Grocholski T., Oja T., Humphrey L., Mäntsälä P., Niemi J., Metsä-Ketelä M. Characterization of the two-component monooxygenase system AlnT/AlnH reveals early timing of quinone formation in alnumycin biosynthesis // J. Bacteriol. 2012. V. 194(11). P. 2829–2836. https://doi.org/10.1128/JB.00228-12
  9. Gu Z., Liu Y., Wang N., Jiao N., Shen L., Liu H., Zhou Y., Liu X., Li J., Liang J., Busse H-J. Chelatococcus reniformis sp. nov., isolated from a glacier // Int. J. Syst. Evol. Microbiol. 2016. V. 66(11). P. 4525–4529. https://doi.org/10.1099/ijsem.0.001384
  10. Hall T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT // Nucl. Acids. Symp. 1999. V. 41. P. 95–98.
  11. Hodkinson B.P., Gottel N.R., Schadt C.W., Lutzoni F. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome // Environ. Microbiol. 2012 V. 14(1). P. 147–161. https://doi.org/10.1111/j.1462-2920.2011.02560.x
  12. Hug I., Deshpande S., Sprecher K.S., Pfohl T., Jenal U. Second messenger–mediated tactile response by a bacterial rotary motor // Science. 2017. V. 358. P. 531–534. https://doi.org/10.1126/science.aan5353
  13. Jourand Ph., Giraud E., Béna G., Sy A., Willems A., Gillis M., Dreyfus B., de Lajudie Ph. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 2269–2273. https://doi.org/10.1099/ijs.0.02902-0
  14. Kämpfer P., Scholz H.C., Lodders N., Loncaric I., Whatmore A.M., BusseH.-J. Camelimonas abortus sp. nov., isolated from placental tissue of cattle // Int. J. Syst. Evol. Microbiol. 2012. P. 62. P. 1117–1120. https://doi.org/10.1099/ijs.0.034389-0
  15. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Molecular Biology and Evolution. 2018. V. 35. P. 1547-1549. https://doi.org/10.1093/molbev/msy096
  16. Lee Y.M., Kim E.H., Lee H.K., Hong S.G. Biodiversity and physiological characteristics of Antarctic and Arctic lichens-associated bacteria // World J. Microbiol. Biotechnol. 2014. V. 10. P. 2711–2721. https://doi.org/10.1007/s11274-014-1695-z
  17. Li L., Osman G., Salam N., Mohamed O.A., Jiao J., Ma J., Asem M.D., Xiao M., Li W.-J. Limoniibacter endophyticus gen. nov., sp. nov., an alphaproteobacterium isolated from the roots of Limonium otolepis // Arch. Microbiol. 2018. V. 200. P. 663–670. https://doi.org/10.1007/s00203-017-1472-0
  18. Madhaiyan M., Poonguzhali S. Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces // Int. J. Syst. Evol. Microbiol. 2014. V. 64. P. 2376–2384. https://doi.org/10.1099/ijs.0.057232-0
  19. Ming Y-Z., Liu L., Xian W-D., Jiao J-Y., Liu Z-T., Li M-M., Xiao M., Li W-J. Rhabdaerophilum calidifontis gen. nov., sp. nov., a novel bacterium isolated from a hot spring, and proposal of Rhabdaerophilaceae fam. nov. // Int. J. Syst. Evol. Microbiol. 2020. V. 70(4). P. 2298–2304. https://doi.org/10.1099/ijsem.0.004035
  20. Noh H.J., Baek K., Hwang C.Y., Shin S.C., Hong S.G., Lee Y.M. Lichenihabitans psoromatis gen. nov., sp. nov., a member of a novel lineage (Lichenihabitantaceae fam. nov.) within the order of Rhizobiales isolated from Antarctic lichen // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 3837–3842. https://doi.org/10.1099/ijsem.0.003695
  21. Noh H.J., Lee Y.M., Park C.H., Lee H.K., Cho J.C., Hong S.G. Microbiome in Cladonia squamosa is vertically stratified according to microclimatic conditions // Front. Microbiol. 2020. V. 11:268. https://doi.org/10.3389/fmicb.2020.00268
  22. Noh H.J., Park Y., Hong S.G., Lee Y.M. Diversity and physiological characteristics of Antarctic lichens-associated bacteria // Microorganisms. 2021. V. 9(3):607. https://doi.org/10.3390/microorganisms9030607
  23. Okonechnikov K., Golosova O., Fursov M. et al. Unipro UGENE: a unified bioinformatics toolkit // Bioinformatics. 2012. V. 28. P. 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  24. Pankratov T.A. Acidobacteria in microbial communities of the bog and tundra lichens // Microbiology (Mikrobiologiya). 2012. V. 81(1). P. 51–58. https://doi.org/10.1134/S0026261711060166
  25. Pankratov T.A., Grouzdev D.S., Patutina E.O. et al. Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales // Antonie van Leeuwenhoek. 2020. V. 113(4). P. 477–489. https://doi.org/10.1007/s10482-019-01357-6
  26. Pankratov T.A., Nikitin P.A., Patutina E.O. Genome analysis of two lichen bacteriobionts, Lichenibacterium ramalinae and Lichenibacterium minor: toxin‒antitoxin systems and secretion proteins // Microbiology. 2022. V. 91(2). P. 160–172. https://doi.org/10.1134/S0026261722020096
  27. Patkar R.N., Naqvi N.I. Fungal manipulation of hormone-regulated plant defense // PLoS Pathog. 2017. V. 13(6):e1006334. https://doi.org/10.1111/jpy.13032
  28. Pichler G., Stöggl W., Carniel F.C., Muggia L., Ametrano C.C., Holzinger A., Tretiach M., Kranner I. Abundance and extracellular release of phytohormones in aero-terrestrial microalgae (Trebouxiophyceae, Chlorophyta) as a potential chemical signaling source // J. Phycol. 2020. V. 56(5). P. 1295–1307. https://doi.org/10.1371/journal.ppat.1006334
  29. Rad V., Simões-Araújo J.L., Leite J., Passos S.R., Martins L.M.V., Xavier G.R., Rumjanek N.G., Baldani J.I., Zilli J.A. Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil // Int. J. Syst. Evol. Microbiol. 2014. V. 64. P. 725–730. https://doi.org/10.1099/ijs.0.053082-0
  30. Sato S., Siarot L., Matsuoka J., Aono T., Oyaizu H. An Azorhizobium caulinodans ORS571 mutant with deletion of a gene encoding a TIGR02302 family protein overproduces exopolysaccharides and is defective in infection into plant host cells // Soil Sci. Plant. Nutr. 2016. V. 62(4). P. 392–398. https://doi.org/10.1080/00380768.2016.1200954
  31. Skipper C., Ferrieri P., Cavert P. Bacteremia and central line infection caused by Bosea thiooxidans. IDCases. 2020. 19:e00676. https://doi.org/10.1016/j.idcr.2019.e00676
  32. Stonehouse E., Kovacikova G., Taylor R.K., Skorupski K. Integration host factor positively regulates virulence gene expression in Vibrio cholerae // J. Bacteriol. 2008. V. 190(13). P. 4736–4748 https://doi.org/10.1128/JB.00089-08
  33. Sun L., Liu H., Chen W., Huang K., Lyu W., Gao X. Alsobacter soli sp. nov., a novel bacterium isolated from paddy soil, emended description of the genus Alsobacter and description of the family Alsobacteraceae fam. nov. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. P. 3902–3907. https://doi.org/10.1099/ijsem.0.003088
  34. Tani A., Sahin N. Methylobacterium haplocladii sp. nov. and Methylobacterium brachythecii sp. nov., isolated from bryophytes. // Int. J. Syst. Evol. Microbiol. 2013. V. 63. P. 3287–3292. https://doi.org/10.1099/ijs.0.048215-0
  35. Tani A., Sahin N., Kimbara K. Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata // Int. J. Syst. Evol. Microbiol. 2012. V. 62. P. 1647–1652. https://doi.org/10.1099/ijs.0.033019-0
  36. Tarakhovskaya E.R., Maslov Yu.I., Shishova M.F. Phytohormones in Algae // Russ. J. Plant. Physl.+. 2007. V. 54(2). P. 163–170. https://doi.org/10.1134/S1021443707020021
  37. Tatusov R.L., Koonin E.V., Lipman D.J. A genomic perspective on protein families // Science. 1997. V. 278(5338). P. 631–637. https://doi.org/10.1126/science.278.5338.631
  38. Trifinopoulos J., Nguyen L.T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis // Nucl. Acids Res. 2016. V. 44. P. 232–235. https://doi.org/10.1093/nar/gkw256
  39. Ueki A., Kodama Y., Kaku N., Shiromura T., Satoh A., Watanabe K., Ueki K. Rhizomicrobium palustre gen. nov., sp. nov., a facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots // J. Gen. Appl. Microbiol. 2010. V. 56(3). P. 193–203. https://doi.org/10.2323/jgam.56.193
  40. Urakami T., Sasaki J., Suzuki K-I., Komagata K. Characterization and description of Hyphomicrobium denitrificans sp. nov. // Int. J. Syst. Evol. Microbiol. 1995. V. 45(3). P. 528–532. https://doi.org/10.1099/00207713-45-3-528
  41. Van Aken B., Peres C.M., Doty S.L., Yoon J.M., Schnoor J.L. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides×nigra DN34) // Int. J. Syst. Evol. Microbiol. 1995. V. 54(4). P. 1191–1196. https://doi.org/10.1099/ijs.0.02796-0
  42. Verma M., Kumar M., Dadhwal M., Kaur J., Lal R. Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site // Int. J. Syst. Evol. Microbiol. 2009. V. 59(4). P. 795–799. https://doi.org/10.1099/ijs.0.005447-0
  43. Zhang L., Song M., Cao Q., Wu Sh., Zhao Y., Huang Y.-W., Chen K., Li S.-P., Xia Z.-Y., Jiang J.-D. Camelimonas fluminis sp. nov., a cyhalothrin-degrading bacterium isolated from river water // Int. J. Syst. Evol. Microbiol. 2015. V. 65. P. 3109–3114. https://doi.org/10.1099/ijs.0.000384

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (345KB)
3.

Скачать (400KB)

© Т.А. Панкратов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах