Role of Albumin and Alpha-Fetoprotein in Prenatal Ontogenesis of the Human Eye

Capa

Citar

Texto integral

Resumo

The vitreous body of the eye of human fetuses contains serum albumin (SA) and alpha-fetoprotein (AFP), which is normally characteristic of human embryos and fetuses. In the second trimester, both proteins are found in the vitreous at a concentration comparable to that in blood serum, after which their content decreases sharply. In this analytical review, taking into account the biological properties of SA and AFP, the role of these proteins in the processes of growth and differentiation of the structures of the developing eye is discussed.

Sobre autores

I. Panova

International Scientific and Practical Center of Tissue Proliferation

Autor responsável pela correspondência
Email: pinag@mail.ru
Russia, 119034, Moscow, ul. Prechistenka, 14/19

A. Tatikolov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences

Email: pinag@mail.ru
Russia, 119334, Moscow, ul. Kosygina 4, 11

Bibliografia

  1. Панова И.Г., Татиколов А.С., Сухих Г.Т. Корреляция между содержанием альбумина и каротиноидов в стекловидном теле глаза человека в пренатальном развитии // Бюллетень экспериментальной биологии и медицины. 2007. Т. 144. № 11. С. 522–525.
  2. Panova I.G., Tatikolov A.S., Sukhikh G.T. Correlation between the content of albumin and carotenoids in human vitreous body during prenatal development. Bulletin of Experimental Biology and Medicine. 2007. V. 144. № 5. P. 681–683.
  3. Панова И.Г., Татиколов А.С., Полтавцева Р.А., Сухих Г.Т. Альфа-фетопротеин в стекловидном теле глаза плодов человека // Бюллетень экспериментальной биологии и медицины. 2010. Т. 150. № 10. С. 391–393.
  4. Panova I.G., Tatikolov A.S.,Poltavtseva R.A., Sukhikh G.T. α-Fetoprotein in human fetal vitreous body // Bull. Exp. Biol. Med. 2011. V. 150. № 4. P. 420–421. https://doi.org/10.1007/s10517-011-1157-7
  5. Панова И.Г., Татиколов А.С. Исследование содержания альфа-фетопротеина и сывороточного альбумина в стекловидном теле глаза плодов человека // Известия РАН. Сер. биологическая. 2011. № 2. С. 235–239.
  6. Panova I.G., Tatikolov A.S. Investigation of the content of alpha-fetoprotein and serum albumin in the vitreous body of the eye of human embryos // Biol. Bull. 2011. V. 38. № 2. P. 191–194. https://doi.org/10.1134/S1062359011020105
  7. Панова И.Г., Татиколов А.С., Смирнова Ю.А. Полтавцева Р.А., Сухих Г.Т. Альбумин в стекловидном теле, сетчатке и хрусталике глаза плодов человека // Бюллетень экспериментальной биологии и медицины. 2016. Т. 162. № 11. С. 578–580.
  8. Panova I.G., Tatikolov A.S., Smirnova Yu.A., Poltavtseva R.A., Sukhikh G.T. Albumin in the vitreous body, retina and lens of human fetal eye // Bull. Exper. Biol. Med. 2017. V. 162. № 11. P. 629–631.
  9. Панова И.Г., Беззубенко Ю.В., Татиколов А.С. Полтавцева Р.А., Иванец Т.Ю., Сухих Г.Т. Альфа-фетопротеин в сетчатке и хрусталике глаза человека на ранних стадиях пренатального развития // Журн. Эвол.Биох.Физ. 2018. Т. 54. № 2. С. 111–114.
  10. Panova I.G., Bezzubenko Yu.V., Tatikolov A.S. Poltavtseva R.A., Ivanets T.Yu., Sukhikh G.T. Alpha-fetoprotein in retina and lens of the human eye at early stages of prenatal development // J. Evol. Biochem. Physiol. 2018. V. 54. № 2. P. 119–122. https://doi.org/10.1134/S0022093018020047
  11. Панова И.Г., Сухова Ю.В., Татиколов А.С. Иванец Т.Ю. Билирубин в стекловидном теле глаза плодов человека // Бюл. Экспер.Биол. Мед. 2020. Т. 170. № 7. С. 118–120.
  12. Panova I.G., Sukhova Y.V., Tatikolov A.S. Ivanets T.Yu. Bilirubin in the vitreous body of the eye of human fetuses // Bull. Exp. Biol. Med. 2020. V. 170. № 1. P. 98–100.
  13. Строева О.Г. Морфогенез и врожденные аномалии глаза млекопитающих. М.: Наука, 1971. 244 с.
  14. Яковлева М.А., Панова И.Г., Фельдман Т.Б., Зак П.П., Татиколов А.С., Сухих Г.Т., Островский М.А. Обнаружение каротиноидов в стекловидном теле глаза человека в пренатальном развитии // Онтогенез. 2007. Т. 38. № 5. С. 380–385.
  15. Yakovleva M.A., Panova I.G., Fel’dman T.B., Zak P.P., Tatikolov A.S., Sukhikh G.T., Ostrovsky M.A. Finding of carotenoids in the vitreous body of human eye during prenatal development // Russ. J. Dev. Biol. 2007. V. 38. P. 317–321. https://doi.org/10.1134/S1062360407050062
  16. Abelev G.I. Alpha-fetoprotein in ontogenesis and its association with malignant tumors // Adv. Cancer Res. 1971. V. 14. P. 295–358.
  17. Adinolfi A., Adinolfi M., Lessof M.H. Alpha-fetoprotein during development and in disease // J. Med. Genetics. 1975. V. 12. P. 138–151.
  18. Anel A., Calvo M., Naval J. Iturralde M., Alava M.A., Piiieiro A. Interaction of rat α-fetoprotein and albumin with polyunsaturated and other fatty acids: determination of apparent association constants // FEBS Letters. 1989. V. 250. № 1. P. 22–24.
  19. Angi M., Kalirai H., Coupland S.E., Damato B.E., Semeraro F., Romano M.R. Proteomic Analyses of the Vitreous Humour // Mediators of Inflammation. 2012. V. 2012. Article ID 148039. 7 p. https://doi.org/10.1155/2012/148039
  20. Aoyagi Y., Ikenaka T., Ichida F. a-Fetoprotein as a carrier protein in plasma and its bilirubin-binding ability // Cancer Res. 1979. V. 39. P. 3571–3574.
  21. Aussel C., Uriel J., Mercier-Bodard C. Rat alpha-fetoprotein: isolation, characterization and estrogen-binding properties // Biochimie. 1973. V. 55. № 11. P. 1431–1437.
  22. Azuma N., Tajima S., Konomi H. Hida T., Akiya S., Uemura Y. Glycosaminoglycan and collagen distribution in the developing human vitreous // Graefe’s Arch. Clin. Exp. Ophthalmol. 1998. V. 236. P. 679–687.
  23. Balazs E.A., Toth L.Z., Ozanics V. Cytological studies on the developing vitreous as related to the hyaloid vessel system // Graefe’s Arch. Clin. Exp. Opthalmol. 1980. V. 213. № 2. P. 71–85.
  24. Beebe D.C., Latker C.H., Jebens H.A. Johnson M.C., Feagans D.E., Feinberg R.N. Transport and steady-state concentration of plasma proteins in the vitreous humor of the chicken embryo: implications for the mechanism of eye growth during early development // Dev. Biol. 1986. V. 114. № 2. P. 361–368. https://doi.org/10.1016/0012-1606(86)90200-9
  25. Berde C.B., Nagai M., Deutsch H.F. Human α-fetoprotein. Fluorescence studies on binding and proximity relationships for fatty acids and bilirubin // J. Biological Chemistry. 1979. V. 254. № 24. P. 12609–12614.
  26. Bhosale P. Bernstein P.S. Vertebrate and invertebrate carotenoid-binding proteins // Arch. Biochem. Biophys. 2007. V. 458. P. 121–127.
  27. Bishop P.N. Structural macromolecules and supramolecular organisation of the vitreous gel // Prog. Retin. Eye Res. 2000. V. 19. P. 323–344.
  28. Bishop P.N., Takanosu M., Le Goff M., Mayne R. The role of the posterior ciliary body in the biosynthesis of vitreous humour // Eye. 2002. V. 16. P. 454–460.
  29. Bondesson M., Hao R., Lin C.-Y. Williams C., Gustafsson J.-A. Estrogen receptor signaling during vertebrate development // Biochim. Biophys. Acta. 2015. V. 1849. № 2. P. 142–151. https://doi.org/10.1016/j.bbagrm.2014.06.005
  30. Bone R.A., Landrum J.T., Fernandez L. Tarsis S.L. Analysis of the macular pigment by HPLC: retinal distribution and age study // Invest. Ophthalmol. Vis. Sci. 1988. V. 29. № 6. P. 843–849.
  31. Bremer F.M., Rasquin F. Histochemical localization of hyaluronic acid in vitreous during embryonic development // Invest. Ophthalmol. Vis. Sci. 1998. V. 39. P. 2466–2469.
  32. Cagianut B., Wunderly C. Protein studies on the human vitreous body // Brit. J. Ophthalmol. 1953. V. 37. P. 229–233.
  33. Christiansen M., Høgdall C.K., Høgdall E.V.S. Alpha-fetoprotein in human fetal cerebrospinal fluid // Clinica Chimica Acta. 2000. V. 291. P. 35–41.
  34. Choi H.Y., Kim S.W., Kim B., Lee H.N., Kim S.J., Song M., Kim S., Kim J., Kim Y.B., Kim J.H., Cho S.G. Alpha-fetoprotein, identified as a novel marker for the antioxidant effect of placental extract, exhibits synergistic antioxidant activity in the presence of estradiol // PLoS One. 2014. V. 9. № 6. e99421. https://doi.org/10.1371/journal.pone.0099421
  35. Coakley J., Kellie S.J., Nath C. Interpretation of alpha-fetoprotein concentrations in cerebrospinal fluid of infants // Ann. Clin. Biochem. 2005. V. 42. P. 24–29. https://doi.org/10.1258/0004563053026763
  36. Copado M.A., Ruiz-Gutierrez V., Rodriguez-Burgos A. Fatty acids and squalene carried by alpha fetoprotein, and fetal and adult serum albumin from chicken. Comparison with these from mammals // J. Protein Chem. 1999. V. 18. № 4. P 413–424.
  37. Coulombre A.J. The role of intraocular pressure in the development of the chick eye. I. Control of eye size // J. Exp. Zool. 1956. V. 133. № 2. P. 211–225.
  38. Coulombre A.J. The role of intraocular pressure in the development of the chick eye. II. Control of corneal size // Arch. Ophthalmol. 1957. V. 57. P. 250–253.
  39. Coulombre A.J., Herrmann H. Lens development. III. Relationship between the growth of the lens and the growth of the outer eye coat // Exp. Eye Res. 1965. V. 4. P. 302–311.
  40. Deutsch H.F. Chemistry and biology of alpha-fetoprotein // Adv. Cancer Res. 1991. V. 56. P. 253–312.
  41. Elmaouhoub A., Dudas J., Ramadori G. Kinetics of albumin- and alpha-fetoprotein-production during rat liver development // Histochem. Cell Biol. 2007. V. 128. P. 431–443.
  42. Fanali G., di Masi A., Trezza V. Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside // Molecular Aspects of Medicine. 2012. V. 33. P. 209–290.
  43. Garcı’a-Garcı’a A.G., Polo-Herna’ndez E., Tabernero A. Medina J.M. Alpha-fetoprotein (AFP) modulates the effect of serum albumin on brain development by restraining the neurotrophic effect of oleic acid // Brain Research. 2015. V. 1624. P. 45–58.
  44. Gitlin D., Perricelli A., Gitlin G.M. Synthesis of α-fetoprotein by liver, yolk sac and gastrointestinal tract of the human conceptus // Cancer Res. 1972. V. 32. P. 979–982.
  45. Grus F.H., Joachim S.C., Pfeiffer N. Proteomics in ocular fluids // Proteomics Clin. Appl. 2007. V. 1. P. 876–888. https://doi.org./10.1002/prca.200700105
  46. Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth–A Review // Placenta. 23 Suppl. A. Trophoblast Res. 2002. V. 6. P. S28–S38.
  47. Hajeri-Germond M., Trojan J., Uriel J. Alpha-fetoprotein uptake by differentiating neuroretinal structures of the chick embryo // Dev. Neurosci. 1991. V. 13. № 3. P. 164–170.
  48. Hankins J. The role of albumin in fluid and electrolyte balance // J. Infusion Nursing. 2006. V. 29. № 5. P. 260–265.
  49. Hirano K., Watanabe Y., Adachi T., Sugiura M. Carrier proteins in human fetal serum: Bilirubin-binding abilities of albumin, alpha-fetoprotein and ligandin // Chem. Pharm. Bul. 1984. V. 32. P. 708–715. https://doi.org/10.1248/cpb.32.708
  50. Hogan V.J., Alvarado J.A., Weddel J.E. Histology of the human eye. Philadelphia: W.B. Saunders Company, 1971. 687 p.
  51. Hsia J.C., Er J.S., Tan C.T., Estes T., Ruoslahti E. α-Fetoprotein binding specificity for arachidonate, bilirubin, docosahexaenoate, and palmitate: a spin label study // J. Biol. Chem. 1980. V. 255. P. 4224–4227.
  52. Jacobsen C. Lysine residue 240 of human serum albumin is involved in high-affinity binding of bilirubin // Biochem. J. 1978. V. 171. P. 453–459.
  53. Jacobson B., Dorfman T., Basu P.K., Hasany S.M. Inhibition of vascular endothelial cell growth and trypsin activity by vitreous // Exp. Eye Res. 1985. V. 41. P. 581–595.
  54. Jamieson P.N., Shaw D.G. Levels of albumin, α-fetoprotein, and IgG in human fetal cerebrospinal fluid // Arch. Dis. Child. 1975. V. 50. P. 484-485.
  55. Jauniaux E., Gulbis B., Jurkovic D., Campbell S., Collins W.P., Ooms H.A. Relationship between protein concentrations in embryological fluids and maternal serum and yolk sac size during human early pregnancy // Hum. Reprod. 1994. V. 9. № 1. P. 161–166. https://doi.org/10.1093/oxfordjournals.humrep.a138308
  56. Jones E.A., Clement-Jones M., James O.F.W. Wilson D.I. Differences between human and mouse alpha-fetoprotein expression during early development // J. Anat. 2001. V. 198. P. 555–559. https://doi.org/10.1046/j.1469-7580.2001.19850555.x
  57. Kim C.K., Yang H.Y. Alpha-fetoprotein values in maternal serum and amniotic fluid for prenatal screening of genetic disorders // Yonsei Medical J. 1987. V. 28. P. 218–227. https://doi.org/10.3349/ymj.1987.28.3.218
  58. Lazarevich N.L. Molecular mechanisms of alpha-fetoprotein gene expression // Biochemistry. 2000. V. 65. № 1. P. 117–133.
  59. Le Goff M.M., Bishop P.N. Adult vitreous structure and postnatal changes // Eye. 2008. V. 22. P. 1214–1222. https://doi.org/10.1038/eye.2008.21
  60. Lutty G.A., Merges C., Threlkeld A.B., Crone S., McLeod D.S. Heterogeneity in localization of isoforms of TGF-β in human retina, vitreous, and choroids // Invest. Ophthalniol. Vis. Sci. 1993. V. 34. № 3. P. 477–487.
  61. Mandal N., Lewis G.P., Fisher S.K., Heegaard S., Prause J.U., la Cour M., Vorum H., Honoré B. Proteomic analysis of the vitreous following experimental retinal detachment in rabbits // J. Ophthalmol. 2015. V. 2015, Article ID 583040, 9 p. https://doi.org/10.1155/2015/583040
  62. Mann I. The development of the human eye. London: Brit. Med. Assoc., 1949. 313 p.
  63. Mizejewski G.J. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants // Exp. Biol. Med. 2001. V. 226. № 5. P. 377–408. https://doi.org/10.1177/153537020122600503
  64. Mizejewski G.J. Biological roles of alpha-fetoprotein during pregnancy and perinatal development // Experimental Biology and Medicine. 2004. V. 229. P. 439–463.
  65. Moldogazieva N.T., Shaitan K.V., Antonov M.Yu. Mokhosoev I.V., Levtsova O.V., Terentiev A.A. Human EGF-derived direct and reverse short linear motifs: conformational dynamics insight into the receptor-binding residues // J. Biomol. Struct. Dynamics. Taylor & Francis, 2017. P. 1–20. https://doi.org/10.1080/07391102.2017.1321502
  66. Murthy K.R., Goel R., Subbannayya Y., Jacob H.K., Murthy P.R., Manda S.S., Patil A.H., Sharma R., Sahasrabuddhe N.A., Parashar A., Nair B.G., Krishna V., Prasad T.K., Gowda H., Pandey A. Proteomic analysis of human vitreous humor // Clinical Proteomics. 2014. V. 11. P. 29. http://doi.org/clinicalproteomicsjournal.com/content/11/1/29
  67. Nayak N.C., Mital I. The dynamics of a-fetoprotein and albumin synthesis in human and rat liver during normal ontogeny // Am. J. Pathol. 1977. V. 86. P. 359–374.
  68. Naval J., Calvo M., Laborda J., Dubouch P., Frain M., Sala-Trepat J.M., Uriel J. Expression of mRNAs for alpha-fetoprotein (AFP) and albumin and incorporation of AFP and docosahexaenoic acid in baboon fetuses // J. Biochem. 1992. V. 111. № 5. P. 649–654.
  69. Neuzil J., Stocker R. Bilirubin attenuates radical–mediated damage to serum albumin // FEBS Lett. 1993. V. 331. P. 281–284.
  70. Panova I.G., Sharova N.P., Dmitrieva S.B., Poltavtseva R. A., Sukhikh G.N., Tatikolov A.S. The use of a cyanine dye as a probe for albumin and collagen in the extracellular matrix // Anal. Biochem. 2007. V. 361. № 2. P. 183–189.
  71. Panova I.G., Yakovleva M.A., Tatikolov A.S., Kononikhin A.S., Feldman T.B., Poltavtseva R.A., Nikolaev E.N., Sukhikh G.T., Ostrovsky M.A. Lutein and its oxidized forms in eye structures throughout prenatalhuman development // Exper. Eye Research. 2017. V. 160. P. 31–37.
  72. Peyrol S., Grimaud J.-A., Pirson Y., Chayviall J.A., Touillon C., Lambert B. Ultrastructural immunoenzymatic study of α-fetoprotein-producting cells in the human fetal liver // J. Histochem. Cytochem. 1977. V. 25. № 6. P. 432–438.
  73. Peters Jr.T. All about albumin: biochemistry, genetics, and medical application. N.Y.: Acad. Press, 1996. 432 p.
  74. Prajapati K.D., Sharma S.S., Roy N. Current perspectives on potential role of albumin in neuroprotection // Rev. Neurosci. 2011. V. 22. № 3. P. 355–363.
  75. Roche M., Rondeau P., Singh N.R., Tarnus E., Bourdon E. The antioxidant properties of serum albumin // FEBS Lett. 2008. V. 582. P. 1783–1787.
  76. Ruoslahti E., Seppala M. α-Fetoprotein in cancer and fetal development // Adv. Cancer Res. 1979. V. 29. P. 275–346.
  77. Sabah J., McConkey E., Welti R., Albin K., Takemoto L.J. Role of albumin as a fatty acid carrier for biosynthesis of lens lipids // Exp. Eye Res. 2005. V. 80. P. 31–36.
  78. Saint-Geniez M., D’Amore P.A. Development and pathology of the hyaloid, choroidal and retinal vasculature // Int. J. Dev. Biol. 2004. V. 48. P. 1045–1058.
  79. Schachter B.S., Toran-Allerand C.D. Intraneuronal alpha-fetoprotein and albumin are not synthesized locally in developing brain // Brain Res. 1982. V. 281. № 1. P. 93–98. https://doi.org/10.1016/0165-3806(82)90116-x
  80. Sebag J. Embryology of the vitreous. In: Sebag J. The Vitreous: Structure, Function, and Pathobiology. N.Y: Springer-Verlag, 1989. P. 7–14.
  81. Sebag J. Molecular biology of pharmacologic vitreolysis // Trans. Am. Ophthalmol. Soc. 2005. V. 103. P. 473–494.
  82. Sebag J., Yee K.M.P. Vitreous: from biochemistry to clinical relevance. In: Tasman W, Jaeger EA, eds. Duane’s Foundations of Clinical Ophthalmology. Philadelphia: Lippincott Williams& Wilkins, 2007. P. 1–67.
  83. Seller M.J. Alphafetoprotein in midtrimester Down’s syndrome fetal serum // J. Med. Genet. 1990. V. 27. P. 240–243.
  84. Sies H., Berndt C., Jones D.P. Oxidative stress // Annu. Rev. Biochem. 2017. V. 86. P. 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037
  85. Sitar M.E., Aydin S., Cakatay U. Human serum albumin and its relation with oxidative stress // Clin. Lab. 2013. V. 59. P. 945–952.
  86. Smith J.A., Francis T.I., Edington G.M., Williams A.O. Human alpha-fetoprotein in body fluids // Brit. J. Cancer. 1971. V. 25. № 2. P. 337–342.
  87. Stocker R., Glazer A.N., Ames B.N. Antioxidant activity of albumin-bound bilirubin // Proc. Natl. Acad. Sci. USA. 1987. V. 84. P. 5918–5922.
  88. Stroeva O.G., Panova I.G. Retinal pigment epithelium: pattern of proliferative activity and its regulation by intraocular pressure in postnatal rats // J. Embryol. Exp. Morph. 1983. V. 75. P. 271–291.
  89. Szajkowski T.P., Chodirker B.N., McDonald K.M., Evans J.A. Maternal serum alpha-fetoprotein levels in fetal hydrocephalus: a retrospective population based study // BMC Pregnancy and Childbirth. 2006. V. 6. P. 23.
  90. Taverna M., Marie A.L., Mira J.P., Guidet B. Specific antioxidant properties of human serum albumin // Annals Intensive Care. 2013. V. 3. P. 4.
  91. Tinoco J., Babcock R., Hincenbergb I., Medwadowski B., Miljanich P., Williams M.A. Linoleic acid deficiency // Lipids. 1976. V. 14. P. 166–173.
  92. Tomasi T.B. Structure and function of alpha-fetoprotein // Annu. Rev. Med. 1977. V. 28. P. 453–465.
  93. Trojan J., Uriel J. Immunocytochemical localization of alpha-fetoprotein (AFP) and serum albumin (ALB) in ecto-, meso- and endodermal tissue derivatives of the developing rat // Oncodev. Biol. Med. 1982. V. 3. P. 13–22.
  94. Uriel J., de Nechaud B., Dupiers M. Estrogen-binding properties of rat, mouse and man fetospecific serum proteins. Demonstration by immuno-autoradiographic methods // Biophys. Biochim. Res. Commun. 1972. V. 46. № 3. P. 1175–1180.
  95. Uriel J., Aussel C., Bouillon D., de Nechaud B. Localization of rat liver alpha-fetoprotein by cell affinity labeling with tritiated oestrogens // Nature New Biol. 1973. V. 244. P. 190–192.
  96. Uriel J., Trojan J., Moro R., Pineiro A. Intracellular uptake of α-fetoprotein: a marker of neural differentiation // Ann. N.Y. Academy of Sciences. 1983. V. 417. P. 321–329.
  97. van Houwelingen A. C., Puls J., Hornstra G. Fetal essential fatty acid (EFA) status during early human development: relationship with maternal EFA status // Am. J. Clin. Nutr. 1993. V. 57. P. 814S. https://doi.org/10.1093/ajcn/57.5.814S
  98. van der Burg B., Sonneveld E., Lemmen J.G., van der Saag P.T. Morphogenetic action of retinoids and estrogens // Int. J. Dev. Biol. 1999. V. 43. P. 735–743.
  99. Vidal R.M. Selective localization of alpha-fetoprotein and serum albumin within the sensoty ganglia cells of developing chicken // Neuroscience Letters. 1983. V. 41. P. 253–257.
  100. Vítek L., Ostrow J.D. Bilirubin chemistry and metabolism; harmful and protective aspects // Curr. Pharm. Design. 2009. V. 15. P. 2869–2883.
  101. Wathen N.C., Campbell D.J., Kitau M.J., Char T. Alphafetoprotein levels in amniotic fluid from 8 to 18 weeks of pregnancy // Brit. J. Obstetrics and Gynaecology. 1993. V. 100. P. 380–382.
  102. Weale R.A. Guest editorial: notes on the macular pigment // Ophthal. Physiol. Opt. 2007. V. 27. P. 1–10.
  103. Wu C.W., Sauter J.L., Johnson P.K., Chen C.-D., Olsen T.W. Identification and localization of major soluble vitreous proteins in human ocular tissue // Am. J. Ophthalmol. 2004. V. 137. P. 655–661.
  104. Yachnin S. The clinical significance of human alpha-fetoprotein // Ann. Clin. Lab. Sci. 1978. V. 8. P. 84–90.
  105. Yamane K., Minamoto A., Yamashita H. Takamura H., Miyamoto-Myoken Y., Yoshizato K., Nabetani T., Tsugita A., Mishima H.K. Proteome analysis of human vitreous proteins // Molecular Cellular Proteomics. 2003. № 2. P. 1177–1187. https://doi.org/10.1074/mcp.M300038-MCP200
  106. Yang J., Klassen H., Pries M., Wang W., Nissen M.H. Vitreous humor and albumin augment the proliferation of cultured retinal precursor cells // J. Neurosci. Res. 2009. V. 87. № 2. P. 495–502.
  107. Yee K.M.P., Feener E.P., Madigan M., Jackson N.J., Gao B.-B., Ross-Cisneros F.N., Provis J., Aiello L.P., Sadun A.A., Sebag J. Proteomic analysis of embryonic and young humanvitreous // Invest. Ophthalmol. Vis. Sci. 2015. V. 56. P. 7036–7042. https://doi.org/10.1167/iovs.15-16809

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (45KB)
3.

Baixar (48KB)
4.

Baixar (161KB)
5.

Baixar (143KB)

Declaração de direitos autorais © И.Г. Панова, А.С. Татиколов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies