Thyroid and Sex Steroid Hormones in Immature and Precocious Brown Trout Salmo trutta

Cover Page

Cite item

Full Text

Abstract

The content of thyroid and sex steroid hormones in the blood of immature and precocious trout Salmo trutta at the final stage of the formation of early maturing fishes (age 1+, 2+) in the population was determined. The formation period of early maturing males varies in different years in Alatsoya River (Karelia). Fish can reach sexual maturity at the age of 1+ or 2+. Immature and precocious trout at the age of 1+ and 2+ do not differ in the free and total triiodothyronine and free thyroxine content. Immature females and males aged 1+ and 2+ also do not differ in the level of sex steroid hormones. In contrast to immature brown trout, precocious males aged 2+ are characterized by an increased content of testosterone and a reduced level of estradiol-17β in the blood. It has been established that the final stage of the formation of early maturing fishes in the population is characterized by a weak involvement of the thyroid gland in the maturation process of males. Also, it was shown that the rate of conversion of testosterone to estradiol-17β in their blood was a significant decrease (4 times). This transformation in all studied females and males of brown trout is associated with their body length. The rate of formation of estradiol-17β in fish was increased with increasing of body length.

About the authors

E. V. Ganzha

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: evganzha@gmail.com
Russia, 119071, Moscow, Leninsky pr.

E. D. Pavlov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: evganzha@gmail.com
Russia, 119071, Moscow, Leninsky pr.

M. A. Ruchiev

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences; Karelian Research Centre, Russian Academy of Sciences

Email: evganzha@gmail.com
Russia, 119071, Moscow, Leninsky pr.; Russia, 185910, Petrozavodsk, Pushkinskaya st.

D. S. Pavlov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: evganzha@gmail.com
Russia, 119071, Moscow, Leninsky pr.

References

  1. Ганжа Е.В., Павлов Е.Д. Суточная динамика тиреоидных и половых стероидных гормонов в крови молоди радужной форели // Биология внутренних вод. 2019. № 3. С. 80–83.
  2. Государственный водный реестр. http://textual.ru/gvr.
  3. Кузищин К.В. Особенности формирования внутривидовой разнокачественности у кумжи Salmo trutta L. Белого моря: Дис. … канд. биол. наук. М.: МГУ. 1997.
  4. Кузищин К.В. Формирование и адаптивное значение внутривидового экологического разнообразия лососёвых рыб (семейство Salmonidae): Дис. докт. биол. наук. М.: МГУ. 2010.
  5. Кузищин К.В., Савваитова К.А., Груздева М.А. Структура чешуи как критерий дифференциации локальных популяций микижи Parasalmo mykiss из рек западной Камчатки и Северной Америки // Вопр. ихтиологии. 1999. Т. 39. № 6. С. 809–818. https://doi.org/10.1134/S0042875218050168
  6. Мурза И.Г., Христофоров О.Л. Динамика полового созревания и некоторые закономеpности фоpмиpования сложной стpуктуpы популяций кумжи Salmo trutta L. из водоемов побеpежья Кандалакшского залива Белого моpя // Сб. науч. тp. ГосНИОРХ. 1984. Вып. 220. С. 41–86.
  7. Павлов Д.С., Ганжа Е.В., Немова Н.Н., Павлов Е.Д., Веселов А.Е., Ручьёв М.А. Уровень тиреоидных и половых стероидных гормонов у кумжи Salmo trutta // Биол. внутр. вод. 2019. № 2. С. 87–92. https://doi.org/10.1134/S0320965219020116
  8. Павлов Е.Д., Буш А.Г., Костин В.В., Павлов Д.С. Рост и раннее половое созревание кумжи Salmo trutta р. Алатсоя (Республика Карелия) // Биол. внутр. вод. 2020. № 6. С. 584–591. https://doi.org/10.31857/S0320965220060145
  9. Павлов Е.Д., Ганжа Е.В., Павлов Д.С. Различие содержания ионов в крови у кумжи Salmo trutta из двух близкорасположенных рек до смолтификации // Известия РАН. Серия биологическая. 2021. № 6. С. 594–601. https//doi.org/31857/S1026347021060147
  10. Пономарева М.В., Пономарева Е.В., Кузищин К.В. Экологические особенности полового созревания кумжи (Salmo trutta L.) // Биоразнообразие и биоресурсы Урала и сопредельных территорий: Матер. III междунар. конф. Оренбург. 25–27 мая 2006 г. Оренбург. 2006. С. 255–257.
  11. Пономарева Е.В., Кузищин К.В., Волков А.А., Гордеева Н.В., Пономарева М.В., Шубина Е.А. Структура и генетическое разнообразие малых популяций кумжи Salmo trutta Кандалакшского залива Белого моря // Вопр. ихтиологии. 2014. Т. 54. № 1. С. 43–56. https://doi.org/10.7868/S0042875214010093
  12. Христофоров О.Л., Мурза И.Г. Половое созревание и структура популяции кумжи реки Поной // Биол. ресурсы Белого моря и внутр. водоемов Европейского Севера: Тез. докл. Сыктывкар. 1990. С. 37.
  13. Чугунова Н.И. Руководство по изучению возраста и роста рыб. М.: Изд-во АН СССР. 1959. 164 с.
  14. Шустов Ю.А., Тыркин И.А., Щуров И.Л., Ивантер Д.Э., Белякова Е.Н. Биологические особенности молоди лососевых рыб в реках Карелии и Кольского п-ва. Петрозаводск: ПетрГУ, 2013. 74 с.
  15. Amenyogbe E., Chen G., Wang Z., Lu X., Lin M., Lin A.Y. A review on sex seteroid hormone strogen receptors in mammals and fish // Intern. J. Endocr. V. 2020. P. 1–9. https://doi.org/10.1155/2020/5386193
  16. Bohlin T., Dellefors C., Faremo U. Probability of first sexual maturation of male parr in wild sea-run brown trout (Salmo trutta) depends on condition factor 1 yr in advance // Can. J. Fish. and Aquat. Sci. 1994. V. 51. P. 1920. https://doi.org/10.1111/faf.12396
  17. Cyr D.G., Eales J.G. Interrelationships between thyroidal and reproductive endocrine systems in fish // Rev. Fish Biology Fisheries. 1996. V. 6. № 2. P. 165–200. https://doi.org/10.1007/BF00182342
  18. Deal C.K., Volkoff H. The role of the thyroid axis in fish // Front. Endocrin. V. 11. 2020. https://doi.org/10.3389/fendo.2020.596585
  19. Dettlaff T.A., Davydova S.I. Differential sensitivity of cells of follicular epithelium and oocytes in the stellate sturgeon to unfavorable conditions, and correlating influence of triiodothyronine // Gen Comp Endocrinol 1979. V. 39. № 2. P. 236–243. https://doi.org/10.1016/0016-6480(79)90228-4
  20. Dolomatov S.I., Kubyshkin A.V., Kutia S.A., Zukow W. Role of thyroid hormones in fishes // J. Health Sciences. 2013. V. 3. № 9. P. 279–296.
  21. Eales J.G., Shostak S. Free T4 and T3 in relation to total hormone, free hormone indices, and protein in plasma of rainbow trout and arctic charr // General and comparative endocrinology. 1985. V. 58. № 2. P. 291–302. https://doi.org/10.1016/0016-6480(85)90345-4
  22. Falahatkar B. Endocrine changes during the previtellogenic stage of the great sturgeon, Huso huso (Linnaeus, 1758) // J. Appl. Ichthyol. 2015. V. 31. № 5. P. 830–838. https://doi.org/10.1111/jai.12813
  23. Ferguson A., Reed T.E., Cross T.F., McGinnity P., Prodöhl P.A. Anadromy, potamodromy and residency in brown trout Sattps:lmo trutta: the role of genes and the environment // J. Fish Biol. 2019. P. 1. https://doi.org/10.1111/jfb.14005
  24. Fleming I.A. Reproductive strategies of Atlantic salmon: Ecology and evolution // Rev.: Fish Biol. Fish. 1996. V. 6. P. 379.
  25. Hart J.L. Pacific fishes of Canada // Bull. Fish. Res. Board Can. 1973. V. 180.
  26. Huusko A., Vainikka A., Syrjänen J.T., Orell P., Louhi P., Vehanen T. Life-history of the adfluvial brown trout (Salmo trutta L.) in Eastern Fennoscandia // Brown Trout: Biology, Ecology and Management. 2018. P. 267. https://doi.org/10.1002/9781119268352.ch12
  27. Jones D.A., Bergman E., Greenberg L., Jonsson B. Food availability in spring affects smolting in brown trout (Salmo trutta) // Canadian J. Fisheries and Aquatic Sciences. 2015. V. 72. P. 1694–1699.
  28. Jonsson B., Jonsson N. Ecology of atlantic salmon and brown trout: habitat as a template for life histories // Fish Fisheries Ser. 2011. V. 33. https://doi.org/10.1007/978-94-007-1189-1
  29. Jonsson B., Jonsson N., Brodtkorb E., Ingebrigtsen P.-J. Life-history traits of Brown Trout vary with the size of small streams // Functional Ecology. 2001. V. 15. № 3. P. 310–317. https://doi.org/10.1046/j.1365-2435.2001.00528.x
  30. Kucherka W., Thomas P., Khan I.A. Sex differences in circulating steroid hormone levels in the red drum, Sciaenops ocellatus L // Aquaculture Research. 2006. V. 37. № 14. P. 1464–1472. https://doi.org/10.1111/j.1365-2109.2006.01583.x
  31. Metcalfe N.A. The interaction between behavior and physiology in determining life history patterns in Atlantic salmon (Salmo salar) // Can. J. Fish. and Aquat. Sci. 1998. V. 55. P. 93–103. https://doi.org/10.1139/D98-005
  32. Morgan I.J., Metcalfe N.B. Deferred costs of compensatory growth after autumnal food shortage in juvenile salmon // Proceedings of the Royal Society of London Series B-Biological Sciences. 2001. V. 268. 295–301. https://doi.org/10.1098/rspb.2000.1365
  33. Plohman J.C., Dick T.A., Eales J.G. Thyroid of lake sturgeon, Acipenser fulvescens: Hormone levels in blood and tissues // Gen. Comp. Endocrinol. 2002. V. 125. № 1. P. 47–55. https://doi.org/10.1006/gcen.2001.7733
  34. Rasmussen G. The population dynamics of brown trout (Salmo trutta L.) in relation to year-class size // Polskie Archiwum Hydrobiologii. 1986. V. 33. P. 489–508.
  35. Tenugu S., Pranoty A., Mamta S.-K., Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes – A review // Aquaculture and Fisheries. 2021. V. 6. № 3. P. 223–246. https://doi.org/10.1016/j.aaf.2020.09.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (74KB)

Copyright (c) 2023 Е.В. Ганжа, Е.Д. Павлов, М.А. Ручьёв, Д.С. Павлов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies