TO THE THEORY OF HYDRAULIC JUMPS IN FILM FLOWS ON ORDINARY AND SUPERHYDROPHOBIC SURFACES
- 作者: Ageev A.I1, Osiptsov A.N1, Smirnov K.V1
-
隶属关系:
- M.V. Lomonosov Moscow State University, Research Institute of Mechanics
- 期: 编号 5 (2025)
- 页面: 16–34
- 栏目: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/376631
- DOI: https://doi.org/10.7868/S3034534025050028
- ID: 376631
如何引用文章
详细
作者简介
A. Ageev
M.V. Lomonosov Moscow State University, Research Institute of Mechanics
Email: aaiageev@mail.ru
Moscow, Russia
A. Osiptsov
M.V. Lomonosov Moscow State University, Research Institute of Mechanics
Email: osiptsov@imec.msu.ru
Moscow, Russia
K. Smirnov
M.V. Lomonosov Moscow State University, Research Institute of MechanicsMoscow, Russia
参考
- Гилинский М.М., Лебедев М.Г., Якубов И.Р. Моделирование течений газа с ударными волнами. М.: Машиностроение, 1984.
- Bélanger J.B. Essai sur la Solution Numérique de Quelques Problèmes Relatifs au Mouvement Permanent des Eaux Courantes (“Essay on the Numerical Solution of Some Problems relative to Steady Flow of Water”); Carilian-Goeury: Paris, France, 1828.
- Boussinesq J.V. Essai sur la Théorie des Eaux Courantes, Mémoires présentés par divers savants à l’Académie des Sciences, Paris, France. V. 23, Série 3 (1), supplément 24, 1877. P. 1–680 (in French).
- Rayleigh L. On the theory of long waves and bores // Proc. R. Soc. Lond. 1914. A 90. P. 324.
- Gilmore F.R., Plesset M.S., and Crossley Jr. H.E. The analogy between hydraulic jumps in liquids and shock wave in gases // J. Appl. Phys. 1950. V. 21. P. 243–249. https://doi.org/10.1063/1.1699641
- Saint-Venant A.J.C. Barré de. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits // Comptes Rendus de l’Académie des Sciences. 1871. V. 73. Р. 147–154 and 237–240.
- Watson E. The spread of a liquid jet over a horizontal plane // J. Fluid Mech. 1964. V. 20. P. 481–499. https://doi.org/10.1017/S0022112064001367
- Bowles R.I., Smith F.T. The standing hydraulic jump: theory, computations and comparisons with experiments // J. Fluid Mech. 1992. V. 242. P. 145–168. https://doi.org/10.1017/S0022112092002313
- Bohr T., Putkaradze V., and Watanabe S. Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows // Phys. Rev. Lett. 1997. V. 79. P. 1038. https://doi.org/10.1103/PhysRevLett.79.1038
- Watanabe S., Putkaradze V., and Bohr T. Integral methods for shallow free-surface flows with separation // J. Fluid Mech. 2003. V. 480. P. 233–265. https://doi.org/10.1017/S0022112003003744
- Bush J.W.M., Aristoff J.M. The influence of surface tension on the circular hydraulic jump // J. Fluid Mech. 2003. V. 489. P. 229–238. https://doi.org/10.1017/S0022112003005159
- Ellegaard C. et al. Creating corners in kitchen sink flows // Nature. 1998. V. 392. P. 767–768. https://doi.org/10.1038/33820
- Bush J.W.M., Aristoff J.M., and Hosoi A.E. An experimental investigation of the stability of the circular hydraulic jump // J. Fluid Mech. 2006. V. 558. P. 32–52. https://doi.org/10.1017/S0022112006009839
- Foglizzo T., Masset F., Guilet J., and Durand G. Shallow water analogue of the standing accretion shock instability: Experimental demonstration and a two-dimensional model // Phys. Rev. Lett. 2012. V. 108. P. 051103–051108. https://doi.org/10.1103/PhysRevLett.108.051103
- Kasimov A.R. A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue // J. Fluid Mech. 2008. V. 601. P. 189–198. https://doi.org/10.1017/S0022112008000773
- Rojas N., Tirapegui E. Harmonic solutions for polygonal hydraulic jumps in thin fluid films // J. Fluid Mech. 2015. V. 780. P. 99–119. https://doi.org/10.1017/jfm.2015.458
- Rothstein J.P. Slip on superhydrophobic surfaces // Annu. Rev. Fluid Mech. 2010. V. 42. P. 89. https://doi.org/10.1146/annurev-fluid-121108-145558
- Агеев А.И., Осипцов А.Н. Макро- и микрогидродинамика течений вблизи супергидрофобных поверхностей // Коллоидный журнал. 2022. Т. 84. № 4. С. 380–395. https://doi.org/10.31857/S0023291222040024
- Celestini F., Kofman R., Noblin X., and Pellegrin M. Water jet rebounds on hydrophobic surfaces: a first step to jet micro-fluidics // Soft Matter. 2010. V. 6. P. 5872–5876. https://doi.org/10.1039/C0SM00794C
- Prince J.F., Maynes D., and Crockett J. Analysis of laminar jet impingement and hydraulic jump on a horizontal surface with slip // Phys. Fluids. 2012. V. 24. P. 102103–102118. https://doi.org/10.1063/1.4757659
- Prince J.F., Maynes D., and Crockett J. Jet impingement and the hydraulic jump on horizontal surfaces with anisotropic slip // Phys. Fluids. 2014. V. 26. P. 042104. https://doi.org/10.1063/1.4870650
- Maynes D., Johnson M., and Webb B.W. Free-surface liquid jet impingement on rib patterned superhydrophobic surfaces // Phys. Fluids. 2011. V. 22. P. 052104–052114. https://doi.org/10.1063/1.3593460
- Седов Л.И. Механика сплошной среды. Т. 1. М.: Наука, 1994. 528 с.
- Gavrilyuk S., Ivanova K., and Favrie N. Multi-dimensional shear shallow water flows: Problems and solutions // J. Comput. Phys. 2019. V. 366. P. 252–280. https://doi.org/10.1016/j.jcp.2018.04.011
- Tani I. Water jump in the boundary layer // J. Phys. Soc. Japan. 1949. V. 4. P. 212–215.
- Черный Г.Г. Газовая динамика. М.: Наука, 1988. 424 с.
- Стокер Дж. Волны на воде. М.: Изд-во иностр. лит-ра, 1959. 620 c.
- Кудрявцев А.Н., Михайлова У.В. Явление гистерезиса при взаимодействии косых гидравлических прыжков на мелкой воде // Теплофизика и аэромеханика. 2023. Т. 30. № 6. С. 1135–1145.
补充文件

