EVOLUTION OF THE FLOW PATTERN AND ACOUSTIC RADIATION DURING THE MERGER OF A FREE-FALLING DROPLET WITH A LIQUID IN AN ELECTROSTATIC FIELD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, synchronized high-speed recording of the flow pattern and acoustic pressure was performed using a hydrophone during the merging of a falling drop of distilled water with a quiescent liquid in an electrostatic field. This is in the impact flow regime, where the kinetic energy of the falling drop significantly exceeds its potential surface energy. In the electrostatic field, a reduction in the chronogram duration, a refinement of the flow pattern, an increase in the frequency, and a more complex structure of the resonant sound packet are observed. The observed changes reflect the influence of the electrostatic field on the droplet flow pattern, which is noticeably pronounced during the formation of the second and third cavities and during the detachment of gas cavities emitting a resonant acoustic signal.

About the authors

Yu. D Chashechkin

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: chakin@ipmnet.ru
Moscow, Russia

V. E Prokhorov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: prohorov@ipmnet.ru
Moscow, Russia

References

  1. Devrankar M., Dhulekar K. A Comparative study on cloud drops // Intern. Res. J. Innov. Engin. Techn. (IRJIET). 2020. V. 4(1). P. 1–4.
  2. Prosperetti A., Og z H. The impact of drops on liquid surfaces and the underwater noise of rain // Ann. Rev. Fluid Mech. 1993. V. 25. P. 577–602. https://doi.org/10.1146/annurev.fl.25.010193.003045
  3. Terry J. A rain splash component analysis to define mechanisms of soil detachment and transportation // Austr. J. Soil Res. 1998. V. 36 (3). P. 525–542. https://doi.org/10.1071/S97078
  4. Karim A. Physics of droplet impact on various substrates and its current advancements in interfacial science: A review // J. Appl. Phys. 2023. V. 133. P. 030701. https://doi.org/10.1063/5.0130043
  5. Rogers W.B. On the formation of rotating rings by air and liquids under certain conditions of discharge // Amer. J. Sci., Second Ser. 1858. V. 26. P. 246–258.
  6. Thomson J.J., Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena // Proc. R. Soc. Lond. 1885. V. 29. P. 417–436.
  7. Guthrie F. On drops — Part II // Proc. R. Soc. Lond. 1863. V. 13. P. 457–483.
  8. Mudiar D., Pawar S., Gopalakrishnan V. et al. Electric field enlarges rain drops beneath electrified clouds: Observational evidence // Geophys. Res. Lett. 2021. V. 48, e2021GL093577. https://doi.org/10.1029/2021GL093577
  9. Григорьев А.И., Ширяева С.И. Этюды о грозе: Огни св. Эльма, свечение воронок смерчей, разные молнии. М.: Директ-Медиа; 2021.
  10. Rayleigh L. Some applications of photography // Nature. 1891. V. 44. P. 249–254. https://doi.org/10.1038/044249e0
  11. Worthington A.M. A study of splashes. London: Longmans, Green and Co, 1908.
  12. Millikan R.A. The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes’s Law // Phys. Rev. V. 32 (4). P. 349–397. https://doi.org/10.1103/PhysRevSeriesI.32.349
  13. Zeleny J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces // Phys. Rev. 1914. V. 3. No. 2. P. 69–91. https://doi.org/10.1103/physrev.3.69
  14. Zeleny J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points // Proc. Cambridge Philos. Soc. 1915. V. 18. P. 71–83.
  15. Zeleny J. Instability of Electrified Liquid Surfaces // Phys. Rev. 1917. V. 10. No. 1. P. 1–6. https://doi.org/10.1103/physrev.10.1
  16. Franklin B. Experiments and Observations on Electricity, made at Philadelphia in America. Part I — III. London: Printed and sold by E. Cave, 1751–1754. http://hdl.loc.gov/loc.rbc/Franklin.06387pt1.1, http://hdl.loc.gov/loc.rbc/Franklin.06387pt2.1
  17. l’Abbé Nollet Lettres sur l’electricité: dans lesquelles on examine les dècouvertes qui ont été faites sur cette matière depuis l’année 1752, & les conséquences que l’on en peut tirer. Avec figures en taille-douce. par M. V. 1–2. https://babel.hathitrust.org/cgi/pt?id=hvd.hxigc4&view=1up&seq=11
  18. Ломоносов М.В. Слово о явлениях воздушных, от электрической силы происходящих. В кн. Избранные произведения. Т. 1. Естественные науки и философия. М. Наука. 1986. С. 163–217.
  19. Tucker N., Stanger J., Staiger M.P. et al. The history of the science and technology of electrospinning from 1600 to 1995 // J. of Eng. Fibers and Fabrics, Special iss. 2012. V. 7 (2). P. 63–71. https://doi.org/10.1177/155892501200702S10
  20. Gamero-Castaño M., Cisquella-Serra A. Electrosprays of highly conducting liquids: A study of droplet and ion emission based on retarding potential and time-of-flight spectrometry // Phys. Rev. Fluids. 2021. V. 6. 013701. https://doi.org/10.1103/PhysRevFluids.6.013701
  21. Wesdemiotis С., Williams-Pavlantos K., Keating A., et al. Mass spectrometry of polymers: A tutorial review // Mass. Spec. Rev. 2023. P. 1–50. https://doi.org/10.1002/mas.21844
  22. Чашечкин Ю.Д., Прохоров В.Е. Высокоразрешающая визуализация гравитационного отрыва капли воды в электростатическом поле // ЖТФ. 2023. Т. 93. Вып. 11. C. 1539–1549. https://doi.org/10.21883/JTF.2023.11.56485.151-23
  23. Чашечкин Ю.Д., Прохоров В.Е. Влияние электрического поля на динамику структурных компонентов течения при гравитационном отрыве капли воды // МЖГ. 2024. № 3. C. 29–42.
  24. Löwe J., Kempf M., and Hinrichsen V. Mechanical and Electrical Phenomena of Droplets Under the Influence of High Electric Fields. In: Schulte, K., Tropea, C., Weigand, B. (eds). Droplet Dynamics Under Extreme Ambient Conditions. Fluid Mechanics and Its Applications. 2022. V. 124. Springer, Cham. https://doi.org/10.1007/978-3-031-09008-0_18
  25. Santra S., Behera N., and Chakraborty S. Modulating droplet electrohydrodynamics via the interplay of extensional flow and an alternating current electric field // Phys. Fluids. 2024. V. 36. P. 102017. https://doi.org/10.1063/5.0231224
  26. Чашечкин Ю.Д., Прохоров В.Е. Аэро- и гидроакустика удара свободно падающей капли о поверхность воды // ДАН. 2010. Т. 434. № 1. С. 51–55.
  27. Greene C.A., Wilson P.S. Laboratory investigation of a passive acoustic method for measurement of underwater gas seep ebullition // J. Acoust. Soc. Am. 2012. V. 131(1). EL61.
  28. Leighton T.G., White P.R. Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions // Proc. R. Soc. London, Ser. A. 2012. V. 468. P. 485.
  29. Sanderson H., Czub M., Jakacki J. et al. Environmental impact of the explosion of the Nord Stream pipelines // Sci Rep. 2023. V. 13. P. 19923. https://doi.org/10.1038/s41598-023-47290-7
  30. Kathiravelu G., Lucke T., and Nichols P. Rain Drop Measurement Techniques: A Review // Water. 2016. V. 8 (1). P. 29. https://doi.org/10.3390/w8010029
  31. Guo Zhen Z., Zhao Hui L., and De Yong F. Experiments on ring wave packet generated by water drop // Chin. Sci. Bull. 2008. V. 53. P. 1634–1638. https://doi.org/10.1007/s11434-008-0246
  32. Чашечкин Ю.Д. Пакеты капиллярных и акустических волн импакта капли // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. T. 1 (94). С. 73–92. https://doi.org/10.18698/1812-3368-2021-1-73-92
  33. Чашечкин Ю.Д., Прохоров В.Е. Гидродинамика удара капли: короткие волны на поверхности венца // ДАН. 2013. Т. 451. № 1. С. 41–45. https://doi.org/10.7868/S0869565213190109
  34. Edgerton H.E., Killian J.R. Jr. Flash. Boston: Hale, Cushman and Flint, 1939.
  35. Mills B.H., Saylor J.R., and Testik F.Y. An Experimental Study of Mesler Entrainment on a Surfactant-Covered Interface: The Effect of Drop Shape and Weber Number // AIChE Journal. 2012. V. 58. No. 1. P. 46–58. https://doi.org/10.1002/aic.12573
  36. Versluis M. High-speed imaging in fluids // Exp. Fluids. 2013. V. 54 (2). P. 1–55. https://doi.org/10.1007/s00348-013-1458-x
  37. Fernández-Raga M., Cabeza-Ortega M., González-Castro V., Peters P., Commelin M., and Campo J.| The Use of high-speed cameras as a tool for the characterization of raindrops in splash laboratory studies // Water. 2021. V. 13. 2851. https://doi.org/10.3390/w13202851
  38. Prokhorov V.E. Acoustics of oscillating bubbles when a drop hits the water surface // Phys. Fluids. 2021. V. 33. P. 083314. https://doi.org/10.1063/5.0058582
  39. Prokhorov V.E. Underwater gas bubbles produced by droplet impact: mechanism to trigger volumetric oscillations // Phys. Fluids. 2023. V. 35. P. 033314. https://doi.org/10.1063/5.0140484
  40. Notz P.K., Basaran O.A. Dynamics of drop formation in an electric field // J. of Colloid and Interface Sci. 1999. V. 213 (1). P. 218–237. https://doi.org/10.1006/jcis.1999.6136
  41. Chashechkin Yu.D., Ilinykh A.Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12. No. 4. P. 374. https://doi.org/10.3390/axioms12040374
  42. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
  43. Chashechkin Yu.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. P. 286. https://doi.org/10.3390/axioms10040286
  44. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean Sciences. 2018. V. 14. P. 471–502.
  45. Harvey A., Hrubý J., and Meier K. Improved and always improving: reference formulations for thermophysical properties of water // J. of Phys. and Chem. Ref. Data. 2023. V. 52. P. 011501. https://doi.org/10.1063/5.0125524
  46. Gillot G., Derec C., Genevaux J.-M. et al. A new insight on a mechanism of air-borne and underwater sound of a drop impacting a liquid surface // Phys. Fluids. 2020. V. 32 (6). P. 062004.
  47. Чашечкин Ю.Д., Ильиных А.Ю. Разрыв спадающего всплеска — динамического следа слияния свободно падающей капли с покоящейся принимающей жидкостью // ДАН. Физика. 2022. Т. 505. С. 50–58.
  48. Li E.Q., Thoraval M.-J., Marston J.O. et al. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. P. 821–835. https://doi.org/10.1017/jfm.2018.383
  49. Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества на начальной стадии образования каверны в импактом режиме слияния свободно падающей капли // Изв.РАН. Механика жидкости и газа. 2024. № 6. С. 62–81. https://doi.org/10.31857/S1024708424060074
  50. УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. https://ipmnet.ru/uniqequip/gfk/
  51. Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли в толщу принимающей жидкости в начальной стадии процесса слияния // Известия РАН. Механика жидкости и газа. 2023, № 1, с. 54–68. https://doi.org/10.31857/S056852812260031X
  52. Чашечкин Ю.Д. Визуализация тонкой структуры возмущений поверхности жидкости течениями, вызванными упавшей каплей // Прикладная математика и механика. 2019. Т. 83. № 3. С. 403–412. https://doi.org/10.1134/S0032823519030032
  53. Chashechkin Yu.D. Visualization of the Fine Perturbation Structure of a Liquid Surface by Flows Induced by a Drop Impact // Fluid Dynamics. 2019. V. 54 (7). P. 919–926. https://doi.org/10.1134/S0015462819070036
  54. Чашечкин Ю.Д., Прохоров В.Е. Влияние электрического поля на динамику структурных компонентов течения при гравитационном отрыве капли воды // Изв.РАН. Механика жидкости и газа. 2024. № 3. C. 29–42.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).