EVOLUTION OF THE FLOW PATTERN AND ACOUSTIC RADIATION DURING THE MERGER OF A FREE-FALLING DROPLET WITH A LIQUID IN AN ELECTROSTATIC FIELD
- Authors: Chashechkin Y.D1, Prokhorov V.E1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
- Issue: No 5 (2025)
- Pages: 151–172
- Section: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/376642
- DOI: https://doi.org/10.7868/S3034534025050138
- ID: 376642
Cite item
Abstract
For the first time, synchronized high-speed recording of the flow pattern and acoustic pressure was performed using a hydrophone during the merging of a falling drop of distilled water with a quiescent liquid in an electrostatic field. This is in the impact flow regime, where the kinetic energy of the falling drop significantly exceeds its potential surface energy. In the electrostatic field, a reduction in the chronogram duration, a refinement of the flow pattern, an increase in the frequency, and a more complex structure of the resonant sound packet are observed. The observed changes reflect the influence of the electrostatic field on the droplet flow pattern, which is noticeably pronounced during the formation of the second and third cavities and during the detachment of gas cavities emitting a resonant acoustic signal.
Keywords
About the authors
Yu. D Chashechkin
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Email: chakin@ipmnet.ru
Moscow, Russia
V. E Prokhorov
Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences
Email: prohorov@ipmnet.ru
Moscow, Russia
References
- Devrankar M., Dhulekar K. A Comparative study on cloud drops // Intern. Res. J. Innov. Engin. Techn. (IRJIET). 2020. V. 4(1). P. 1–4.
- Prosperetti A., Og z H. The impact of drops on liquid surfaces and the underwater noise of rain // Ann. Rev. Fluid Mech. 1993. V. 25. P. 577–602. https://doi.org/10.1146/annurev.fl.25.010193.003045
- Terry J. A rain splash component analysis to define mechanisms of soil detachment and transportation // Austr. J. Soil Res. 1998. V. 36 (3). P. 525–542. https://doi.org/10.1071/S97078
- Karim A. Physics of droplet impact on various substrates and its current advancements in interfacial science: A review // J. Appl. Phys. 2023. V. 133. P. 030701. https://doi.org/10.1063/5.0130043
- Rogers W.B. On the formation of rotating rings by air and liquids under certain conditions of discharge // Amer. J. Sci., Second Ser. 1858. V. 26. P. 246–258.
- Thomson J.J., Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena // Proc. R. Soc. Lond. 1885. V. 29. P. 417–436.
- Guthrie F. On drops — Part II // Proc. R. Soc. Lond. 1863. V. 13. P. 457–483.
- Mudiar D., Pawar S., Gopalakrishnan V. et al. Electric field enlarges rain drops beneath electrified clouds: Observational evidence // Geophys. Res. Lett. 2021. V. 48, e2021GL093577. https://doi.org/10.1029/2021GL093577
- Григорьев А.И., Ширяева С.И. Этюды о грозе: Огни св. Эльма, свечение воронок смерчей, разные молнии. М.: Директ-Медиа; 2021.
- Rayleigh L. Some applications of photography // Nature. 1891. V. 44. P. 249–254. https://doi.org/10.1038/044249e0
- Worthington A.M. A study of splashes. London: Longmans, Green and Co, 1908.
- Millikan R.A. The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes’s Law // Phys. Rev. V. 32 (4). P. 349–397. https://doi.org/10.1103/PhysRevSeriesI.32.349
- Zeleny J. The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces // Phys. Rev. 1914. V. 3. No. 2. P. 69–91. https://doi.org/10.1103/physrev.3.69
- Zeleny J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points // Proc. Cambridge Philos. Soc. 1915. V. 18. P. 71–83.
- Zeleny J. Instability of Electrified Liquid Surfaces // Phys. Rev. 1917. V. 10. No. 1. P. 1–6. https://doi.org/10.1103/physrev.10.1
- Franklin B. Experiments and Observations on Electricity, made at Philadelphia in America. Part I — III. London: Printed and sold by E. Cave, 1751–1754. http://hdl.loc.gov/loc.rbc/Franklin.06387pt1.1, http://hdl.loc.gov/loc.rbc/Franklin.06387pt2.1
- l’Abbé Nollet Lettres sur l’electricité: dans lesquelles on examine les dècouvertes qui ont été faites sur cette matière depuis l’année 1752, & les conséquences que l’on en peut tirer. Avec figures en taille-douce. par M. V. 1–2. https://babel.hathitrust.org/cgi/pt?id=hvd.hxigc4&view=1up&seq=11
- Ломоносов М.В. Слово о явлениях воздушных, от электрической силы происходящих. В кн. Избранные произведения. Т. 1. Естественные науки и философия. М. Наука. 1986. С. 163–217.
- Tucker N., Stanger J., Staiger M.P. et al. The history of the science and technology of electrospinning from 1600 to 1995 // J. of Eng. Fibers and Fabrics, Special iss. 2012. V. 7 (2). P. 63–71. https://doi.org/10.1177/155892501200702S10
- Gamero-Castaño M., Cisquella-Serra A. Electrosprays of highly conducting liquids: A study of droplet and ion emission based on retarding potential and time-of-flight spectrometry // Phys. Rev. Fluids. 2021. V. 6. 013701. https://doi.org/10.1103/PhysRevFluids.6.013701
- Wesdemiotis С., Williams-Pavlantos K., Keating A., et al. Mass spectrometry of polymers: A tutorial review // Mass. Spec. Rev. 2023. P. 1–50. https://doi.org/10.1002/mas.21844
- Чашечкин Ю.Д., Прохоров В.Е. Высокоразрешающая визуализация гравитационного отрыва капли воды в электростатическом поле // ЖТФ. 2023. Т. 93. Вып. 11. C. 1539–1549. https://doi.org/10.21883/JTF.2023.11.56485.151-23
- Чашечкин Ю.Д., Прохоров В.Е. Влияние электрического поля на динамику структурных компонентов течения при гравитационном отрыве капли воды // МЖГ. 2024. № 3. C. 29–42.
- Löwe J., Kempf M., and Hinrichsen V. Mechanical and Electrical Phenomena of Droplets Under the Influence of High Electric Fields. In: Schulte, K., Tropea, C., Weigand, B. (eds). Droplet Dynamics Under Extreme Ambient Conditions. Fluid Mechanics and Its Applications. 2022. V. 124. Springer, Cham. https://doi.org/10.1007/978-3-031-09008-0_18
- Santra S., Behera N., and Chakraborty S. Modulating droplet electrohydrodynamics via the interplay of extensional flow and an alternating current electric field // Phys. Fluids. 2024. V. 36. P. 102017. https://doi.org/10.1063/5.0231224
- Чашечкин Ю.Д., Прохоров В.Е. Аэро- и гидроакустика удара свободно падающей капли о поверхность воды // ДАН. 2010. Т. 434. № 1. С. 51–55.
- Greene C.A., Wilson P.S. Laboratory investigation of a passive acoustic method for measurement of underwater gas seep ebullition // J. Acoust. Soc. Am. 2012. V. 131(1). EL61.
- Leighton T.G., White P.R. Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions // Proc. R. Soc. London, Ser. A. 2012. V. 468. P. 485.
- Sanderson H., Czub M., Jakacki J. et al. Environmental impact of the explosion of the Nord Stream pipelines // Sci Rep. 2023. V. 13. P. 19923. https://doi.org/10.1038/s41598-023-47290-7
- Kathiravelu G., Lucke T., and Nichols P. Rain Drop Measurement Techniques: A Review // Water. 2016. V. 8 (1). P. 29. https://doi.org/10.3390/w8010029
- Guo Zhen Z., Zhao Hui L., and De Yong F. Experiments on ring wave packet generated by water drop // Chin. Sci. Bull. 2008. V. 53. P. 1634–1638. https://doi.org/10.1007/s11434-008-0246
- Чашечкин Ю.Д. Пакеты капиллярных и акустических волн импакта капли // Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2021. T. 1 (94). С. 73–92. https://doi.org/10.18698/1812-3368-2021-1-73-92
- Чашечкин Ю.Д., Прохоров В.Е. Гидродинамика удара капли: короткие волны на поверхности венца // ДАН. 2013. Т. 451. № 1. С. 41–45. https://doi.org/10.7868/S0869565213190109
- Edgerton H.E., Killian J.R. Jr. Flash. Boston: Hale, Cushman and Flint, 1939.
- Mills B.H., Saylor J.R., and Testik F.Y. An Experimental Study of Mesler Entrainment on a Surfactant-Covered Interface: The Effect of Drop Shape and Weber Number // AIChE Journal. 2012. V. 58. No. 1. P. 46–58. https://doi.org/10.1002/aic.12573
- Versluis M. High-speed imaging in fluids // Exp. Fluids. 2013. V. 54 (2). P. 1–55. https://doi.org/10.1007/s00348-013-1458-x
- Fernández-Raga M., Cabeza-Ortega M., González-Castro V., Peters P., Commelin M., and Campo J.| The Use of high-speed cameras as a tool for the characterization of raindrops in splash laboratory studies // Water. 2021. V. 13. 2851. https://doi.org/10.3390/w13202851
- Prokhorov V.E. Acoustics of oscillating bubbles when a drop hits the water surface // Phys. Fluids. 2021. V. 33. P. 083314. https://doi.org/10.1063/5.0058582
- Prokhorov V.E. Underwater gas bubbles produced by droplet impact: mechanism to trigger volumetric oscillations // Phys. Fluids. 2023. V. 35. P. 033314. https://doi.org/10.1063/5.0140484
- Notz P.K., Basaran O.A. Dynamics of drop formation in an electric field // J. of Colloid and Interface Sci. 1999. V. 213 (1). P. 218–237. https://doi.org/10.1006/jcis.1999.6136
- Chashechkin Yu.D., Ilinykh A.Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12. No. 4. P. 374. https://doi.org/10.3390/axioms12040374
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
- Chashechkin Yu.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. P. 286. https://doi.org/10.3390/axioms10040286
- Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean Sciences. 2018. V. 14. P. 471–502.
- Harvey A., Hrubý J., and Meier K. Improved and always improving: reference formulations for thermophysical properties of water // J. of Phys. and Chem. Ref. Data. 2023. V. 52. P. 011501. https://doi.org/10.1063/5.0125524
- Gillot G., Derec C., Genevaux J.-M. et al. A new insight on a mechanism of air-borne and underwater sound of a drop impacting a liquid surface // Phys. Fluids. 2020. V. 32 (6). P. 062004.
- Чашечкин Ю.Д., Ильиных А.Ю. Разрыв спадающего всплеска — динамического следа слияния свободно падающей капли с покоящейся принимающей жидкостью // ДАН. Физика. 2022. Т. 505. С. 50–58.
- Li E.Q., Thoraval M.-J., Marston J.O. et al. Early azimuthal instability during drop impact // J. Fluid Mech. 2018. V. 848. P. 821–835. https://doi.org/10.1017/jfm.2018.383
- Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества на начальной стадии образования каверны в импактом режиме слияния свободно падающей капли // Изв.РАН. Механика жидкости и газа. 2024. № 6. С. 62–81. https://doi.org/10.31857/S1024708424060074
- УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. https://ipmnet.ru/uniqequip/gfk/
- Чашечкин Ю.Д., Ильиных А.Ю. Перенос вещества капли в толщу принимающей жидкости в начальной стадии процесса слияния // Известия РАН. Механика жидкости и газа. 2023, № 1, с. 54–68. https://doi.org/10.31857/S056852812260031X
- Чашечкин Ю.Д. Визуализация тонкой структуры возмущений поверхности жидкости течениями, вызванными упавшей каплей // Прикладная математика и механика. 2019. Т. 83. № 3. С. 403–412. https://doi.org/10.1134/S0032823519030032
- Chashechkin Yu.D. Visualization of the Fine Perturbation Structure of a Liquid Surface by Flows Induced by a Drop Impact // Fluid Dynamics. 2019. V. 54 (7). P. 919–926. https://doi.org/10.1134/S0015462819070036
- Чашечкин Ю.Д., Прохоров В.Е. Влияние электрического поля на динамику структурных компонентов течения при гравитационном отрыве капли воды // Изв.РАН. Механика жидкости и газа. 2024. № 3. C. 29–42.
Supplementary files


