INFLUENCE OF EXTERNAL ELECTRIC CIRCUIT CHARACTERISTICS ON THE DEVELOPMENT OF A NANOSECOND PULSE DISCHARGE
- Authors: Ermakov E.A1, Ivanov I.E1
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Physics
- Issue: No 5 (2025)
- Pages: 130-150
- Section: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/376641
- DOI: https://doi.org/10.7868/S3034534025050123
- ID: 376641
Cite item
Abstract
In this paper, a numerical study is carried out of the influence of the external electrical circuit elements on the processes inside the gas-discharge gap at the stage after the formation of a columnar spark channel closing the electrodes. A method for correcting the current in an electrical circuit based on solving a differential equation for the potential at the anode is proposed. The simulation is carried out for four variants of an external electrical circuit: short-circuiting the source on the electrodes (constant voltage at the interelectrode gap) and with ballast resistance in R, RC- and RLC- circuits. In the first two cases, a constant current source (electromotive force 25 kV) is considered, in the other two, a capacitor C charged at the initial moment (up to a voltage of 25 kV). The processes are modeled in molecular nitrogen at atmospheric pressure (the exception is the last case with a reduced pressure of 150 Torr). In all cases, current and voltage waveforms on all circuit elements were obtained and analyzed.
About the authors
E. A Ermakov
Lomonosov Moscow State University, Faculty of Physics
Email: eg.ermakov2013@yandex.ru
Moscow, Russia
I. E Ivanov
Lomonosov Moscow State University, Faculty of Physics
Email: ivanovmai@gmail.com
Moscow, Russia
References
- Znamenskaya I., Koroteeva E., Doroshchenko I., Sysoev N. Evolution and fluid dynamic effects of pulsed columnshaped plasma // Experimental Thermal and Fluid Science. 2019. V. 109.109868 .
- Znamenskaya I., Mursenkova I., Doroshchenko I., Ivanov I. Flow analysis of a shock wave at pulse ionization: Riemann problem implementation // Physics of Fluids. 2019. V. 31. No. 11. 116101.
- Jia Liu, Mingshu Bi, Haipeng Jiang, and Wei Gao. Evaluation of spark discharge // Journal of Electrostatics. 2020. V. 107. 103500.
- Weidong Zhou, Kexue Li, Huiguo Qian, Zhijun Ren, and Youli Yu. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy // Applied optics. 2012. V. 51. No. 7. P. 42–48.
- Korytchenko K.V., Essmann S., Markus D., Maas U., and Poklonskii E.V. Numerical and experimental investigation of the channel expansion of a low-energy spark in the air // Combustion Science and Technology. 2018. V. 191. No. 12. P. 2136–2161.
- Korytchenko K.V., Poklonskii E.V., and Krivosheev P.N. Model of the spark discharge initiation of detonation in a mixture of hydrogen with oxygen // Russian Journal of Physical Chemistry B. 2014. V. 8. No. 5. P. 692–700.
- Korytchenko K.V., Shypul O.V., Samoilenko D., Varshamova I.S., Lisniak А.A., Harbuz S.V., and Ostapov K.M. Numerical simulation of gap length influence on energy deposition in spark discharge // Electrical Engineering & Electromechanics. 2021. No. 1. P. 35–43.
- Суржиков С.Т. Численное моделирование двухмерной структуры тлеющего разряда с учетом нагрева нейтрального газа // ТВТ. 2005. T. 43. № 6. С. 828–844.
- Гладуш Г.Г., Самохин А.А. Численное исследование шнурования тока на электродах в тлеющем разряде // Прикл. мех. техн. физ. 1981. Т. 22. № 5. С. 15–23.
- Суржиков С.Т. Физическая механика газовых разрядов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 640 с.
- Ermakov E.A., Ivanov I.E. Numerical study of gas-dynamic and thermal processes in a pulsed electric discharge // Fluid Dynamics. 2023. V. 58. No. 4. P. 745–758.
- Ermakov E.A., Ivanov I.E., Kryukov I.A., Mursenkova I.V., and Znamenskaya I.A. Numerical simulations of nanosecond discharge in gas-dynamic flows // Journal of Physics: Conference Series. 2020. V. 1647. 012015.
- Kulikovsky A.A. The structure of streamers in N2. I: fast method of space-charge dominated plasma simulation // J. Phys. D: Appl. Phys. 1994. V. 27. P. 2556–63.
- Kulikovsky A.A. Nonlinear expansion of the cathode region in atmospheric pressure glow discharge // J. Phys. D: Appl. Phys. 1993. V. 28. P. 431–435.
- Surzhikov S.T., Shang J.S. Two-component plasma model for two-dimensional glow discharge in magnetic field // Journal of Computational Physics. 2004. V. 199. No. 2. P. 437–464.
- Shkurenkov I., Adamovich I.V. Energy balance in nanosecond pulse discharges in nitrogen and air // Plasma Sources Sci. Technol. 2016. V. 25. P. 12.
- Знаменская И.А., Коротеев Д.А., Попов Н.А. Наносекундный сильноточный разряд в сверхзвуковом потоке газа // Теплофизика высоких температур. 2005. Т. 43. № 5. С. 820–827.
- Райзер Ю.П. Физика газового разряда. М.: Наука. Гл. ред. физ.-мат. лит., 1987. 592 с.
- Surzhikov S.T., Shang J.S. Multi-Fluid Model of Weakly Ionized Electro-Negative Gas // AIAA. 2004. Paper 04-2659.
- Surzhikov S.T., Shang J.S. Physics of The Surface Direct Current Discharge In Magnetic Field // AIAA. 2004. Paper 04-0176.
- Kulikovsky A.A. The structure of streamers in N2. II: two-dimensional simulation // J. Phys. D: Appl. Phys. 1994. V. 27. P. 2564–2569.
- Сухов А.К. Двумерное моделирование формирования тлеющего разряда в аргоне. Часть 1. Модель и расчетная схема // Вестник КГУ им. Н.А. Некрасова. 2014. № 6.
- Toro E.F. The HLLC Riemann solver // Shock Waves. 2019. V. 29. P. 1065–1082.
- Toro E.F., Spruce M., and Speares W. Restoration of the contact surface in the HLL-Riemann solver // Shock Waves. 1994. V. 4. P. 25–34.
- Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики / Матем. сб. М.: Математический институт имени В.А. Стеклова РАН, 1959. Т. 89. № 3. С. 271–306.
- Годунов С.К. Численное решение многомерных задач газовой динамики / Под ред. С.К. Годунова. М.: Наука, 1976. 400 с.
- Harten A., Lax P.D., and van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws // SIAM Review. 1983. V. 25. No. 1. P. 35–61.
- Знаменская И.А., Мурсенкова И.В., Наумов Д.С., Сысоев Н.Н. Локализация импульсного объемного разряда в вихревую зону за клином, обтекаемым сверхзвуковым потоком // Вестник Московского Университета. Серия 3. Физика. Астрономия. 2019. № 5. C. 80–85.
- Bruggeman P., Brandenburg R. Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics // J. Phys. D: Appl. Phys. 2013. V. 46. 464001.
- Базелян Э.М., Райзер Ю.П. Искровой разряд. М.: Изд-во МФТИ. 1997. 320 с.
- Vitello P.A., Penetrante B.M., and Bardsley J.N. Simulation of negative-streamer dynamics in nitrogen // Phys. Rev. E. 1994. V. 49. 5574.
Supplementary files


