THE ONSET OF CONVECTION IN A SUSPENSION OF GRAVITACTIC MICROORGANISMS IN A HORIZONTAL LAYER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The onset of bioconvection in a non-isothermal suspension of gravitactic microorganisms in a horizontal layer is investigated. It is shown that oscillatory instability is possible in the case of positive gravitaxis of microorganisms. The dependences of bioconvective thresholds, the critical wave numbers and the frequency of neutral oscillations on the Peclet number, as well as the Lewis number, and the concentration Rayleigh number are obtained and analyzed.

About the authors

B. L Smorodin

Perm State University

Email: bsmorodin@yandex.ru
Perm, Russia

A. M Mezentseva

Perm State University

Email: mez.sasha60@gmail.com
Perm, Russia

References

  1. Platt R. Bioconvection Patterns in Cultures of Free-Swimming Organisms // Science. 1961. V. 133. P. 1766–1767.
  2. Childress S., Levandowsky M., and Spiegel E.A. Pattern formation in a suspension of swimming microorganisms: equations and stability theory // J. Fluid Mech. 1975. V. 63. P. 591–613.
  3. Pedley T., Hill N., and Kessler J. The Growth of Bioconvection Patterns in a Uniform Suspension of Gyrotactic Micro-Organisms // J. Fluid Mech. 1988. V. 195. P. 223–237.
  4. Pedley T., Kessler J. Hydrodynamic Phenomena in Suspensions of Swimming Microorganisms // Annu. Rev. Fluid Mech. 1992. V. 2. P. 313–358.
  5. Vincent R., Hill N. Bioconvection in a Suspension of Phototactic Algae // J. Fluid Mech. 1996. V. 327. P. 343–371.
  6. Hillesdon A., Pedley T. Bioconvection in Suspensions of Oxytactic Bacteria: Linear Theory // J. Fluid Mech. 1996. V. 324. P. 223–259.
  7. Häder D.-P., Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages // Life. 2022. V. 12. 1522.
  8. Stallwitz E., Häder D.-P. Effects of Heavy Metals on Motility and Gravitactic Orientation of the Flagellate Euglena gracilis // Europ. J. Protistol. 1994. V. 30. P. 18–24.
  9. Alloui Z., Nguyen T.H., and Bilgen E. Stability analysis of thermo-bioconvection in suspensions of gravitactic microorganisms in a fluid layer // International Communications in Heat and Mass Transfer. 2006. V. 33. P. 1198–1206.
  10. Alloui Z., Nguyen T.H., and Bilgen E. Numerical investigation of thermo-bioconvection in a suspension of gravitactic microorganisms // International Journal of Heat and Mass Transfer. 2007. V. 50. P. 1435–1441.
  11. Mil-Mart´ınez R., Vargas R.O., Escand´on J.P., P´erez-Reyes I., Turcio M., G´omez-L´opez A., and L´opez-Serrano F. Thermal Effect on the Bioconvection Dynamics of Gravitactic Microorganisms in a Rectangular Cavity // Fluids. 2022. V. 7. No. 3. Р. 113.
  12. Bees M.A. Advances in Bioconvection // Annu. Rev. Fluid Mech. 2020. V. 52. P. 449–476.
  13. Гершуни Г.З., Жуховицкий Е.М. Конвективная устойчивость несжимаемой жидкости. М: Наука, 1972. 392 с.
  14. Смородин Б.Л., Тараут А.В. Параметрическая конвекция слабопроводящей жидкости в переменном электрическом поле // Изв. РАН. МЖГ. 2010. № 1. С. 3–11.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).