ICE FORMATION PROCESS SIMULATION ON AIRCRAFT HEATED SURFACES
- Authors: Goryachev A.V1, Goryachev P.A1, Goryachev D.A1, Lyubimov D.A1, Nikolaev A.A1, Nuriev M.V1, Skripkin R.V1
-
Affiliations:
- Baranov Central Institute of Aviation Motors
- Issue: No 4 (2025)
- Pages: 134-148
- Section: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/375912
- DOI: https://doi.org/10.7868/S3034534025040121
- ID: 375912
Cite item
Abstract
About the authors
A. V Goryachev
Baranov Central Institute of Aviation Motors
Email: avgoryachev@ciam.ru
Moscow, Russia
P. A Goryachev
Baranov Central Institute of Aviation Motors
Email: pagoryachev@ciam.ru
Moscow, Russia
D. A Goryachev
Baranov Central Institute of Aviation Motors
Email: dagoryachev@ciam.ru
Moscow, Russia
D. A Lyubimov
Baranov Central Institute of Aviation Motors
Email: lyubimov@ciam.ru
Moscow, Russia
A. A Nikolaev
Baranov Central Institute of Aviation Motors
Email: aanikolaev@ciam.ru
Moscow, Russia
M. V Nuriev
Baranov Central Institute of Aviation Motors
Email: mvnuriev@ciam.ru
Moscow, Russia
R. V Skripkin
Baranov Central Institute of Aviation Motors
Email: rvskripkin@ciam.ru
Moscow, Russia
References
- Lee Y.M., Lee J.H., Raj L.P., Jo J.H., and Myong R.S. Large-eddy simulations of complex aerodynamic flows over multi-element iced airfoils // Aerosp. Sci. Technol. 2021. No. 109.
- Pereira C.M. Status of NTSB aircraft icing certifcationrelated safety recommendations issued as a result of the 1994 ATR-72 accident at Roselawn // AIAA Paper 97-0410. 1997.
- Goraj Z. An overview of the deicing and antiicing technologies with prospects for the future // 24TH International Congress of the Aeronautical Sciences. Yokohama, Japan. 2004. P. 1–11.
- Gori G., Parma G., Zocca M., and Guardone A. Local Solution to the Unsteady Stefan Problem for In-Flight Ice Accretion Modeling // J. of Aircraft. 2018. V. 55. No. 1. P. 251.
- Жердев А.А., Горячев А.В., Гребеньков С.А., Жулин В.Г., Горячев П.А., Савенков В.В. Использование электрообогрева для защиты входных элементов двигателя от обледенения // Изв. ВУЗов. Машиностроение. 2014. №11(656). С. 56.
- Wright W. User’s manual for LEWICE version 3.2 // NASA/CR-2008-214255. 2008.
- Программный комплекс Ansys FENSAP-ICE: Ice Accretion Simulation Software // 2019. https://www.ansys.com/products/fluids/ansys-fensap-ice.
- Горячев А.В., Горячев П.А., Рыбаков А.А. Программный модуль компьютерного моделирования процесса обледенения элементов авиационных силовых установок (“КРИСТАЛЛ 2023”). Свидетельство о гос. регистрации программы для ЭВМ№2023666962. Дата регистрации: 08.08.2023.
- Henry R. Development of an electrothermal de-icing/anti-icing model // AIAA 92-0526. 1992.
- Lei G.-L., Dong W., Zheng M., Guo Z.-Q., and Liu Y.-Z. Numerical investigation on heat transfer and melting process of ice with different porosities // Int. J. Heat Mass Transf. 2017. No. 107. P. 934–944.
- Wright W., Dewitt K.J., Keith T. Numerical simulation of icing, deicing, and shedding // AIAA-91-0665. 1991.
- Messinger B.L. Equilibrium temperature of an unheated icing surface as a function of airspeed // J. Aeronaut. Sci. 1953. V. 20. No. 1. P. 29.
- Bourgault Y., Beaugendre H., and Habashi W.G. Development of a shallow-water icing model in FENSAP-ICE // J. of Aircraft. 2000. V. 37. No. 4. P. 640.
- Reid T., Baruzzi G.S., and Habashi W.G. FENSAP-ICE: unsteady conjugate heat transfer simulation of electrothermal de-icing // J. Aircr. No. 49. 2012. P. 1101.
- Myers T.G. Extension to the Messinger model for aircraft icing // AIAA J. 2001. No. 39. P.211.
- Gori G., Zocca M., and Guardone A. A model for in-flight ice accretion based on the exact solution of the unsteady Stefan problem // AIAA 2015-3019. 2015.
- Myers T.G., Charpin J.P. A mathematical model for atmospheric ice accretion and water flow on a cold surface // Int. J. Heat Mass Transf. 2004. No. 47. P. 5483.
- Рыбаков А.А., Шумилин С.С., Горячев П.А., Горячев А.В. Разработка программного модуля “Кристалл” для 3D-расчета процесса обледенения элементов авиационной техники // Тез. докл. Национального суперкомпьютерного форума (НСКФ-2021). Россия, Переславль-Залесский: ИПС им. А.К. Айламазяна РАН, 2021.
- Shen X., Wang H., Lin G., Bu X., and Wen D. Unsteady simulation of aircraft electrothermal deicing process with temperature-based method // J. Aerosp. Eng. 2020. No. 234. P. 388.
- Chauvin R., Bennani L., Trontin P., and Villedieu P. An implicit time marching Galerkin method for the simulation of icing phenomena with a triple layer model // Finite Elements in Analysis and Design. 2018. No. 150. P. 20–33.
- Esmaeilifar E., Prince Raj L., and Myong R.S. Computational simulation of aircraft electrothermal de-icing using an unsteady formulation of phase change and runback water in a unified framework // Aerospace Science and Technology. 2022. No. 130.
- Bennani L., Trontin P., Chauvin R., and Villedieu P. A non-overlapping optimized Schwarz method for the heat equation with non linear boundary conditions and with applications to de-icing // Comput. Math. Appl. 2020. No. 80 (6). P. 1500.
- Meng F., Banks J.W., Henshaw W.D., and Schwendeman D.W. A stable and accurate partitioned algorithm for conjugate heat transfer // Journal of Computational Physics. 2017. No. 344. P. 51.
- Бендерский Л.А., Горячев А.В., Горячев П.А., Горячев Д.А., Любимов Д.А., Студенников Е.С. Особенности моделирования тепломассообменных процессов при формировании льда в условиях атмосферного облака, состоящего из переохлажденных капель // ТВТ. 2024. Т. 62.№2. С. 222.
- Программный модуль компьютерного моделирования физических процессов в авиационных силовых установках (“Лазурит”) // Свидетельство о гос. регистрации программы для ЭВМ №2023666963. Дата регистрации: 08.08.2023.
- Roe P.L. Characteristic-based schemes for the Euler equations // Annual review of fluid mechanics. 1986. V. 18. P. 337.
- Wright W.B., Al-Khalil K., and Miller D. Validation of NASA Thermal Ice Protection Computer Codes Part 2—The Validation of LEWICE/Thermal // AIAA Paper 97-0050. 1997.
Supplementary files


