ICE FORMATION PROCESS SIMULATION ON AIRCRAFT HEATED SURFACES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An improved icing model is proposed that makes it possible to calculate the process of ice formation on objects of various shapes under conditions of cyclic heating of the surface of an aircraft element. The model describes the conjugated problem of unsteady heat exchange between the surface of an aircraft equipped with an electric heating element and an ice build-up formed on its surface by the impact of an atmospheric cloud of liquid supercooled droplets. The ice build-up is considered as a three-layer structure consisting of a water layer on the surface of the aircraft skin, the ice layer itself and a water film on its surface. The model was validated using experimental data (temperatures of an electrically heated wing model under icing conditions). The possibility of describing the transient processes occurring during the formation and mutual transformation of various combinations of phase states of ice build-up elements during cyclic heating is demonstrated. The results of calculating the thicknesses of water films and temperature fields at the ice boundary with the surface of the aircraft can be used to calculate the magnitude of the forces holding the ice on the surface and to predict its removal without complete melting.

About the authors

A. V Goryachev

Baranov Central Institute of Aviation Motors

Email: avgoryachev@ciam.ru
Moscow, Russia

P. A Goryachev

Baranov Central Institute of Aviation Motors

Email: pagoryachev@ciam.ru
Moscow, Russia

D. A Goryachev

Baranov Central Institute of Aviation Motors

Email: dagoryachev@ciam.ru
Moscow, Russia

D. A Lyubimov

Baranov Central Institute of Aviation Motors

Email: lyubimov@ciam.ru
Moscow, Russia

A. A Nikolaev

Baranov Central Institute of Aviation Motors

Email: aanikolaev@ciam.ru
Moscow, Russia

M. V Nuriev

Baranov Central Institute of Aviation Motors

Email: mvnuriev@ciam.ru
Moscow, Russia

R. V Skripkin

Baranov Central Institute of Aviation Motors

Email: rvskripkin@ciam.ru
Moscow, Russia

References

  1. Lee Y.M., Lee J.H., Raj L.P., Jo J.H., and Myong R.S. Large-eddy simulations of complex aerodynamic flows over multi-element iced airfoils // Aerosp. Sci. Technol. 2021. No. 109.
  2. Pereira C.M. Status of NTSB aircraft icing certifcationrelated safety recommendations issued as a result of the 1994 ATR-72 accident at Roselawn // AIAA Paper 97-0410. 1997.
  3. Goraj Z. An overview of the deicing and antiicing technologies with prospects for the future // 24TH International Congress of the Aeronautical Sciences. Yokohama, Japan. 2004. P. 1–11.
  4. Gori G., Parma G., Zocca M., and Guardone A. Local Solution to the Unsteady Stefan Problem for In-Flight Ice Accretion Modeling // J. of Aircraft. 2018. V. 55. No. 1. P. 251.
  5. Жердев А.А., Горячев А.В., Гребеньков С.А., Жулин В.Г., Горячев П.А., Савенков В.В. Использование электрообогрева для защиты входных элементов двигателя от обледенения // Изв. ВУЗов. Машиностроение. 2014. №11(656). С. 56.
  6. Wright W. User’s manual for LEWICE version 3.2 // NASA/CR-2008-214255. 2008.
  7. Программный комплекс Ansys FENSAP-ICE: Ice Accretion Simulation Software // 2019. https://www.ansys.com/products/fluids/ansys-fensap-ice.
  8. Горячев А.В., Горячев П.А., Рыбаков А.А. Программный модуль компьютерного моделирования процесса обледенения элементов авиационных силовых установок (“КРИСТАЛЛ 2023”). Свидетельство о гос. регистрации программы для ЭВМ№2023666962. Дата регистрации: 08.08.2023.
  9. Henry R. Development of an electrothermal de-icing/anti-icing model // AIAA 92-0526. 1992.
  10. Lei G.-L., Dong W., Zheng M., Guo Z.-Q., and Liu Y.-Z. Numerical investigation on heat transfer and melting process of ice with different porosities // Int. J. Heat Mass Transf. 2017. No. 107. P. 934–944.
  11. Wright W., Dewitt K.J., Keith T. Numerical simulation of icing, deicing, and shedding // AIAA-91-0665. 1991.
  12. Messinger B.L. Equilibrium temperature of an unheated icing surface as a function of airspeed // J. Aeronaut. Sci. 1953. V. 20. No. 1. P. 29.
  13. Bourgault Y., Beaugendre H., and Habashi W.G. Development of a shallow-water icing model in FENSAP-ICE // J. of Aircraft. 2000. V. 37. No. 4. P. 640.
  14. Reid T., Baruzzi G.S., and Habashi W.G. FENSAP-ICE: unsteady conjugate heat transfer simulation of electrothermal de-icing // J. Aircr. No. 49. 2012. P. 1101.
  15. Myers T.G. Extension to the Messinger model for aircraft icing // AIAA J. 2001. No. 39. P.211.
  16. Gori G., Zocca M., and Guardone A. A model for in-flight ice accretion based on the exact solution of the unsteady Stefan problem // AIAA 2015-3019. 2015.
  17. Myers T.G., Charpin J.P. A mathematical model for atmospheric ice accretion and water flow on a cold surface // Int. J. Heat Mass Transf. 2004. No. 47. P. 5483.
  18. Рыбаков А.А., Шумилин С.С., Горячев П.А., Горячев А.В. Разработка программного модуля “Кристалл” для 3D-расчета процесса обледенения элементов авиационной техники // Тез. докл. Национального суперкомпьютерного форума (НСКФ-2021). Россия, Переславль-Залесский: ИПС им. А.К. Айламазяна РАН, 2021.
  19. Shen X., Wang H., Lin G., Bu X., and Wen D. Unsteady simulation of aircraft electrothermal deicing process with temperature-based method // J. Aerosp. Eng. 2020. No. 234. P. 388.
  20. Chauvin R., Bennani L., Trontin P., and Villedieu P. An implicit time marching Galerkin method for the simulation of icing phenomena with a triple layer model // Finite Elements in Analysis and Design. 2018. No. 150. P. 20–33.
  21. Esmaeilifar E., Prince Raj L., and Myong R.S. Computational simulation of aircraft electrothermal de-icing using an unsteady formulation of phase change and runback water in a unified framework // Aerospace Science and Technology. 2022. No. 130.
  22. Bennani L., Trontin P., Chauvin R., and Villedieu P. A non-overlapping optimized Schwarz method for the heat equation with non linear boundary conditions and with applications to de-icing // Comput. Math. Appl. 2020. No. 80 (6). P. 1500.
  23. Meng F., Banks J.W., Henshaw W.D., and Schwendeman D.W. A stable and accurate partitioned algorithm for conjugate heat transfer // Journal of Computational Physics. 2017. No. 344. P. 51.
  24. Бендерский Л.А., Горячев А.В., Горячев П.А., Горячев Д.А., Любимов Д.А., Студенников Е.С. Особенности моделирования тепломассообменных процессов при формировании льда в условиях атмосферного облака, состоящего из переохлажденных капель // ТВТ. 2024. Т. 62.№2. С. 222.
  25. Программный модуль компьютерного моделирования физических процессов в авиационных силовых установках (“Лазурит”) // Свидетельство о гос. регистрации программы для ЭВМ №2023666963. Дата регистрации: 08.08.2023.
  26. Roe P.L. Characteristic-based schemes for the Euler equations // Annual review of fluid mechanics. 1986. V. 18. P. 337.
  27. Wright W.B., Al-Khalil K., and Miller D. Validation of NASA Thermal Ice Protection Computer Codes Part 2—The Validation of LEWICE/Thermal // AIAA Paper 97-0050. 1997.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).