TURBULENT FLOW IN A NARROW CHANNEL WITH A SINGLE-ROW STACK OF INCLINED TRENCH DIMPLES ON ONE WALL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of an experimental study of flow aerodynamics in a narrow channel with a rectangular cross-sectional height of H = 20 mm and an aspect ratio of AR = 7.5 are presented. The channel surface contains a system of elongated trench dimples with a cylindrical cross-section. The dimples have a width of D/H = 0.75, a relative depth of Δ/D = 0.22, and a length of L/D = 7 calibers. They are positioned at a fixed angle of φ = 45°, to the longitudinal axis of the channel. The package contained a total of seven dimples, with a constant spacing of h/D = 2. The Reynolds number, calculated from the hydraulic diameter, was constant at Rech = 3.9 · 104 in the experiments measuring velocity components and velocity fluctuations. Hydraulic losses were measured over a wide range of Reynolds numbers, from Rech = 1.9 · 104 to Rech = 1.1 · 105. The experiments measured velocity components and their fluctuations in the longitudinal and transverse directions for a channel with dimples on one wall, and the hydraulic resistance of a channel with dimples on one and two opposite walls. It was found that the longitudinal velocity profiles Uz differ significantly depending on the position within the dimple for all the dimples studied. A boundary layer separation zone forms at the inlet of the dimple, where the flow enters. The extent of this zone along the dimple does not exceed one caliber, and further along the dimple, no negative values of the velocity Uz are observed. As one moves along the dimple, the intensity of the vortex motion of the gas inside significantly weakens. A similar flow structure was previously observed by the authors (Thermophysics and Aeromechanics. 2022. V. 29. No. 6. P. 935) in a single trench dimple with the same geometric parameters.

About the authors

V. I Terekhov

Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Author for correspondence.
Email: v.terekhov2010@yandex.ru
Novosibirsk, Russia; Novosibirsk, Russia

I. A Chokhar

Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences

Email: dstarter1@mail.ru
Novosibirsk, Russia

N. Yan Lun

Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University

Email: yln1999@mail.ru
Novosibirsk, Russia; Novosibirsk, Russia

References

  1. Терехов В.И., Терехов В.В., Чохар И.А., Ян Лун Н. Экспериментальное исследование структуры течения в одиночной траншейной лунке // Теплофизика и аэромеханика. 2022. Т. 29.№6. С. 935–947. Terekhov V.I., Terekhov V.V., Chokhar I.A., and Yan Lun N. Experimental investigation of the flow structure in a single trench dimple // Thermophys. Aeromech. 2022. V. 29. P. 887–898.
  2. Калинин Э.К., Дрейцер Г.А., Ярхо С.А. Интенсификация теплообмена в каналах. М.: Машиностроение, 1990. 208 с.
  3. Ligrani P.M. Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines // Int. J. of Rotating Machinery.2013. V. 2013, Article ID 275653, 32 p. http:// dx.doi.org/10.1155/2013/275653
  4. Rashidi S., Hormozi F., Sunden B., and Mahian O. Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications // Appl. Energy. 2019. V. 259. P. 1491.
  5. Исаев С.А. Генезис аномальной интенсификации отрывного течения и теплообмена в наклонных канавках на структурированных поверхностях // Изв. РАН. МЖГ. 2022.№5. С. 13–24.
  6. Terekhov V.I., Kalinina S.V., and Mshvidobadze Y.M. Heat transfer coefficient and aerodynamic resistance on a surface with a single dimple // J. Enhanc. Heat Transf. 1997. V. 4. No. 2.
  7. Tay C.M., Chew Y.T., Khoo B.C., and Zhao J.B. Development of flow structures over dimples // Experimental Thermal and Fluid Science. 2014.V. 52. P. 278–287.
  8. Zhou W., Rao Y., and Hu H. An experimental investigation on the characteristics of turbulent boundary layer flows over a dimpled surface // J. of Fluids Engineering. 2016. V. 138.№2. P. 021204.
  9. Wang Z., Yeo K.S., and Khoo B.C. DNS of low Reynolds number turbulent flows in dimpled channels // Journal of Turbulence. 2006. No. 7. P. N37.
  10. Mahmood G.I., Ligrani P.M. Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number and flow structure// Int. J. Heat Mass Transfer. 2002. V. 45. P. 2011–2020.
  11. Turnow J., Kornev N., and Hassel E. Flow structures and heat transfer enhancement on asymmetric dimples // Int. Symp. Turbul. Shear Flow Phenomena. 2013. V. 2. P. 1–6.
  12. Saha K., Acharya S. Heat Transfer Enhancement Using Angled Grooves as Turbulence Promoters // J. Turbomachinery. 2014. V. 136. 081004.
  13. Zhang P., Rao Y., and Xie Y. Turbulent Flow Structure and Heat Transfer Mechanisms over Surface Vortex Structures of Micro V-Shaped Ribs and Dimples// Int. J. Heat and Mass Transfer. 2021.V. 178. P. 121611.
  14. Jordan C.N., Wright L.M. Heat transfer enhancement in a rectangular (AR=3:1) channel with V-shaped dimples // J. of Turbomachinery. 2013. V. 135.№1. 011028. P. 10. https://doi.org/10.1115/GT2011-46128
  15. Kornev N., Turnow J., Hassel E., Isaev S., and Wurm F.-H. Fluid mechanics and heat transfer in a channel with spherical and oval dimples // Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 2010. V. 110/2010. P. 231–237.
  16. Yu C., Shao M., Zhang W.,Wang G., and Huang M. Study on heat transfer synergy and optimization of capsule-type plate heat exchangers // Processes. 2024. V. 12.№3. P. 604.
  17. Liu J., Song Y., Xie G., and Sunden B. Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions // Energy. 2015. V. 79. P. 1–19.
  18. Калинин Э.Е., Дрейцер Г.Л., Копп И.З., Мякочин А.С. Эффективные поверхности теплообмена. М.: Энергоатомиздат, 1998. 408 с Kalinin E.K., Dreitser G.A., Kopp I.Z., and Myakotchin A.S. Efficient surfaces for heat exchangers. Fundamental sand design. Engl. ed.: A.E. Bergles and W. Begell.–NewYork; Wallingford : Begell House, com. 2002. – XIX. 392 p.
  19. Isaev S., Gritckevich М., Leontiev А., and Popov I. Abnormal enhancement of separated turbulent air flow and heat transfer in inclined single-row oval-trench dimples at the narrow channelwall // Acta Astronaut. 2019.V. 163 (Part A). P. 202–207. https://doi.org/10.1016/j.actaastro. 2019.01.033
  20. Терехов В.И., Чохар И.А., Ян Лун Н. Структура турбулентного течения в полуцилин -дрической траншее, расположенной на стенке плоского канала // ПМТФ. 2025. T. 66.№1.
  21. Зубин М.А., Зубков А.Ф. Структура отрывного обтекания цилиндрической каверны на стенке плоского канала // Изв. РАН. Механика жидкости и газа. 2022.№1. С. 81–89.
  22. Isaev S.A., Guvernyuk S.V., Mikheev N.I., Popov I.A., and Nikushchenko D.V. Numerical and experimental study of abnormal enhancement of separated turbulent flow and heat transfer in inclined oval-trench dimples on the plate and on the narrow channel wall // J. of Phys.: Conf. Ser. 2021. 2039. 012009. https://doi.org/10.1088/1742-6596/2039/1/012009
  23. Давлетшин И.А., Душин Н.С., Душина О.А., Михеев М.И., Шакиров Р.Р., Исаев С.А. Теплоотдача и гидравлическое сопротивление плоского канала с дискретной шероховатостью стенки в виде наклонных траншейных лунок // Теплофизика и Аэромеханика. 2023. T. 30.№4. C. 669–674. Davletshin I.A., Dushin N.S., Dushina O.A., Mikheev N.I., Shakirov R.R., and Isaev S.A. Heat transfer and hydraulic resistance of a flat channel with discrete wall roughness in the form of inclined trench dimples// Thermophys. Aeromech. 2023. V. 30. P. 631–636. https://doi.org/10.1134/S0869864323040030
  24. Mironov A., Isaev S., Skrypnik A., and Popov I. Numerical and physical simulation of heat transfer enhancement using oval dimple vortex generators – Review and recommendations // Energies. 2020. V. 13. P. 5243.
  25. Галаев С.А., Левченя А.М., Рис В.В., Смирнов Е.М. Винтовая длиннопериодическая структура ядра турбулентного потока в нагреваемом прямоугольном канале с наклонными ребрами на одной из стенок // Журнал технической физики. 2024. Т. 94. Вып. 11. С. 1799–1808.
  26. Nazari S., Zamani M., and Moshizi S.A. Comparative study on the influence of depth, number and arrangement of dimples on the flow and heat transfer characteristics at turbulent flow regimes // Heat and Mass Transfer. 2018. V. 54 P. 2743–2760.
  27. Liu J., Xie G., and Simon T.W. Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves// Int. J. Heat and Mass Transfer. 2015. V. 81. P. 563–577. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.021

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).