METHOD OF TEMPERATURE CORRELATIONS FOR ESTIMATING THE LARGE-SCALE CIRCULATION RATE IN THE CASE OF TURBULENT CONVECTION OF LIQUID METALS IN AN INCLINED CYLINDER
- Authors: Mamykin A.D.1
-
Affiliations:
- Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
- Issue: No 1 (2025)
- Pages: 161-173
- Section: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/294923
- DOI: https://doi.org/10.31857/S1024708425010083
- EDN: https://elibrary.ru/DUYKXE
- ID: 294923
Cite item
Abstract
About the authors
A. D. Mamykin
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
Email: mad@icmm.ru
Perm, Russia
References
- Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Benard convection // Rev. of Mod. Phys. 2009. V. 81. № 2. P. 503–537. http://dx.doi.org/10.1103/revmodphys.81.503
- Chilla F., Schumacher J. New perspectives in turbulent Rayleigh-Benard convection // J. Eur. Phys. J. E. 2012. V. 35. № 7. P. 58. http://dx.doi.org/10.1103/revmodphys.81.503
- Васильев А.Ю., Сухановский А.Н., Фрик П.Г. Структура и динамика крупномасштабной циркуляции в турбулентной конвекции при высоких числах Прандтля // Изв. РАН. МЖГ. 2020. № 6. С. 42–49. http://dx.doi.org/10.31857/S0568528120060134
- Kolesnichenko I., Khalilov R., Teimurazov A., Frick P. On boundary conditions in liquid sodium convective experiments // J. Phys.: Conf. Ser. 2017. V. 891. № 1. P. 012075. http://dx.doi.org/10.1088/1742-6596/891/1/012075
- Khalilov R., Kolesnichenko I., Pavlinov A., Mamykin A., Shestakov A., Frick P. Thermal convection of liquid sodium in inclined cylinders // Phys. Rev. Fluids. 2018. V. 3. № 4. P. 043503. http://dx.doi.org/10.1103/PhysRevFluids.3.043503
- Schumacher J., Gotzfried P., Scheel J.D. Enhanced endstrophy generation for turbulent convection in low-Prandtlnumber fluids // App. Phys. Sciences. 2015. V. 112. № 31. P. 9530–9535. https://doi.org/10.1073/pnas.1505111112
- Scheel J.D., Schumacher J. Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows // Phys. Rev. Fluids. 2017. V. 2. № 12. P. 123501. http://dx.doi.org/10.1103/physrevfluids.2.123501
- Teimurazov A., Frick P. Thermal convection of liquid metal in a long inclined cylinder // Phys. Rev. Fluids. 2017. V. 2. № 11. P. 113501. https://doi.org/10.1103/physrevfluids.2.113501
- Cioni S., Ciliberto S., Sommeria J. Strongly turbulent Rayleigh-Benard convection in mercury: comparison with results at moderate Prandtl number // J. Fluid Mech. 1997. V. 335. P. 111–140. https://doi.org/10.1017/S0022112096004491
- Takeshita T., Segawa T., Glazier J. A., Sano M. Thermal Turbulence in Mercury // Phys. Rev. Lett. 1997. V. 76. P. 1465–1468. https://doi.org/10.1103/PhysRevLett.76.1465
- Frick P., Khalilov R., Kolesnichenko I., Mamykin A., Pakholkov V., Pavlinov A., Rogozhkin S. Turbulent convective heat transfer in a long cylinder with liquid sodium // Europhys. Lett. 2015. V. 109. № 1. P. 14002. http://dx.doi.org/10.1209/0295-5075/109/14002
- Vasil’ev A.Y., Kolesnichenko I.V., Mamykin A.D., Frick P.G., Khalilov R.I., Rogozhkin S.A., Pakholkov V.V. Turbulent convective heat transfer in an inclined tube filled with sodium // Tech. Phys. 2015. V. 60. № 9. P. 1305–1309. http://dx.doi.org/10.1134/s1063784215090236
- Zwirner L., Khalilov R., Kolesnichenko I., Mamykin A., Mandrykin S., Pavlinov A., Shestakov A., Teimurazov A., Frick P., Shishkina O. The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection // J. Fluid Mech. 2020. V. 884. P. A18. https://doi.org/10.1017/jfm.2019.935
- Kolesnichenko I.V., Mamykin A.D., Pavlinov A.M., Pakholkov V.V., Rogozhkin S.A., Frick P.G., Khalilov R.I., Shepelev S.F. Experimental study on free convection of sodium in a long cylinder // Therm. Eng. 2015. V. 62. № 6. P. 414–422. http://dx.doi.org/10.1134/s0040601515060026
- Shishkina O., Horn S. Thermal convection in inclined cylindrical containers // J. Fluid Mech. 2016. V. 790. P. R3. http://dx.doi.org/10.1017/jfm.2016.55
- Zwirner L., Shishkina O. Confined inclined thermal convection in low-Prandtl-number fluids // J. Fluid Mech. 2018. V. 850. P. 984–1008. http://dx.doi.org/10.1017/jfm.2018.477
- Мандрыкин С. Д., Теймуразов А. С. Турбулентная конвекция жидкого натрия в наклонном цилиндре с единичным аспектным отношением // Выч. мех. сплошных сред. 2018. Т. 11. № 4. С. 417–428. http://dx.doi.org/10.7242/1999-6691/2018.11.4.32
- Taylor G. The spectrum of turbulence // Proc. R. Soc. 1938. V. A164. P. 476–490. https://doi.org/10.1098/rspa.1938.0032
- Кириллов П.Л., Денискина Н.Б. Теплофизические свойства жидкометаллических теплоносителей. ЦНИИАтоминформ, 2000. 42 с.
- Deardorff J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers // J. Fluid Mech. 1970. V. 41. P. 453–480. http://dx.doi.org/10.1017/S0022112070000691
- Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using objectoriented techniques // Comput. Phys. 1998. V. 12. P. 620–631. http://dx.doi.org/10.1063/1.168744
- Chilla` F., Rastello M., Chaumat S., Castaing B. Long relaxation times and tilt sensitivity in Rayleigh-Benard turbulence // Eur. Phys. J. 2004. B 40 (2). P. 223–227. https://doi.org/10.1140/epjb/e2004-00261-3
- Kolesnichenko I., Mamykin A., Golbraikh E., Pavlinov A. Application of the temperature correlation method to measuring the flow rate of liquid sodium // Magnetohydrodynamics. 2021. V. 54. №4. P. 547–557. http://dx.doi.org/10.22364/mhd.57.4.9
- Mamykin A.D., Khalilov R.I., Golbraikh E., Kolesnichenko I.V. Based on the temperature correlation principle, the use of a magnetic obstacle to generate pulsations in the flow measurement of a liquid metal coolant // Diagn. resour. mech. mater. struct. 2023. Iss. 3. P. 17–28. http://dx.doi.org/10.17804/2410-9908.2023.3.017-028
Supplementary files
