New Models of Heterogeneous Catalysis for Numerical Study of Flows and Heat Transfer in an Induction HF Plasmatron

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical simulation of the flow of multicomponent nonequilibrium dissociated air past a water-cooled cylindrical model in underexpanded supersonic jets of high-enthalpy air is carried out within the framework of the Navier-Stokes equations using the stage-by-stage heterogeneous kinetics of interaction of dissociated air with the surfaces of β-cristobalite and copper and taking into account chemical reactions in flow for the conditions of experiments on heat transfer in the induction HF plasmatron VGU-4 (IPMech RAS). Numerical solutions for the chemical composition of the gas and for heat fluxes to the surface of the sensors are compared for various catalysis models. The contribution of diffusion and heat conduction processes to the heat flux to the surface is shown in various regimes of the interaction of gas with the surface material. The dependence of the flow characteristics (the chemical composition of the gas on the surface, the degree of filling of the surface, and the heat flux to the surface) on the density of adsorption sites has been determined. The modification of this dependence makes it possible to describe the entire range of the boundary conditions from non-catalytic to full catalytic ones.

Full Text

Restricted Access

About the authors

A. A. Krupnov

Lomonosov Moscow State University

Author for correspondence.
Email: kroupnov@imec.msu.ru
Russian Federation, Moscow

M. Yu. Pogosbekyan

Lomonosov Moscow State University

Email: pogosbekian@imec.msu.ru
Russian Federation, Moscow

V. I. Sakharov

Lomonosov Moscow State University

Email: sakharov@imec.msu.ru
Russian Federation, Moscow

References

  1. Gordeev A.N., Kolesnikov A.F., Yakushin M.I. An Induction Plasma Application to “Buran’s” Heat Protection Tiles Ground Tests // SAMPE Journal. 1992. V. 28. № 3. P. 29−33.
  2. Колесников А.Ф., Сахаров В.И. Экстраполяция параметров теплообмена модели в недорасширенных струях диссоциированного воздуха в ВЧ-плазмотроне на условия обтекания сферы высокоскоростным потоком в земной атмосфере // Физико-химическая кинетика в газовой динамике. 2015. V. 16. № 2.
  3. Колесников А.Ф., Сахаров В.И. Подобие теплообмена модели в недорасширенных струях диссоциированного воздуха в ВЧ-плазмотроне и при обтекании сферы высокоскоростным потоком в земной атмосфере // Изв. РАН. Механика жидкости и газа. 2016. № 3. P. 110–116.
  4. Васильевский С., Колесников А., Сахаров В. Исследование точности моделирования конвективного теплообмена в дозвуковых струях диссоциированного воздуха в ВЧ-плазмотроне // Физико-химическая кинетика в газовой динамике. 2020. V. 21. № 2. P. 1–13.
  5. Гордеев А.Н., Колесников А.Ф., Сахаров В.И. Течение и теплообмен в недорасширенных струях индукционного плазмотрона // Изв. РАН. Механика жидкости и газа. МЖГ. 2011. № 4. P. 130–142.
  6. Галкин С. et al. Исследование влияния формы модели на конвективные тепловые потоки к холодной каталитической поверхности в сверхзвуковых струях диссоциированного воздуха в ВЧ-плазмотроне // Физико-химическая кинетика в газовой динамике. 2021. V. 22. № 3. P. 21–30.
  7. Романовский Б.В. Основы катализа. Москва: БИНОМ. Лаборатория знаний, 2015. 1–172 p.
  8. Temkin M.I. The transition state in surface reaction // Acta Physicochimika. 1938. V. 8. № 2. P. 141–170.
  9. Kovalev V.L., Kroupnov A.A., Vetchinkin А.S. Quantum mechanics calculation of catalytic properties of a copper sensor for prediction of flow characteristics in plasmatron // Acta Astronaut. 2015. V. 117. P. 408–413.
  10. Крупнов А.А., Погосбекян М.Ю., Сахаров В.И. Применение моделей гетерогенного катализа при решении задач струйного обтекания моделей из меди для условий экспериментов на индукционном ВЧ-плазмотроне // Физико-химическая кинетика в газовой динамике. 2023. V. 24. № 4. P. 1–16.
  11. Kroupnov A.A., Pogosbekian M.J. Interaction of dissociated air with the surface of β-cristobalite material // Acta Astronaut. 2023. V. 203. P. 454–468.
  12. Чаплыгин А. et al. Экспериментальное и численное исследование теплового эффекта катализа на поверхностях металлов и кварца в недорасширенных струях диссоциированного воздуха // Физико-химическая кинетика в газовой динамике. 2018. V. 19. № 4. P. 1–11.
  13. Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP technique of high temperature gas flows numerical simulations // Proc. 5th Europ. Symp. on Aerothermodyn. Spase Vehicles. Cologne, 2004. P. 323–328.
  14. Сахаров В.И. Численное моделирование термически и химически неравновесных течений и теплообмена в недорасширенных струях индукционного плазмоторона // Изв. РАН Механика жидкости и газа. 2007. № 6. P. 157–168.
  15. Гурвич Л.В., Вейц И.В., Медведев В.А. Термодинамические свойства индивидуальных веществ/3rd ed. М.: Наука, 1978.
  16. Park C. et al. Review of chemical-kinetic problems of future NASA missions. II — Mars entries // J Thermophys Heat Trans. 1994. V. 8. № 1. P. 9–23.
  17. Losev S., Makarov V., Nikolsky V. Thermochemical nonequilibrium kinetic models in strong shock waves on air // 6th Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994.
  18. Лосев С., Макаров В., Погосбекян М. Модель физико-химической кинетики за фронтом очень сильной ударной волны в воздухе // Изв. РАН. Механика жидкости и газа. 1995. № 2. P. 169–182.
  19. Ибрагимова Л.Б., Смехов Г.Д., Шаталов О.П. Константы скорости диссоциации двух-атомных молекул в термически равновесных условиях // Изв. РАН. Механика жидкости и газа. 1999. № 1. P. 181–186.
  20. Hirschfelder J.O., Curtiss C.F., Bird R.B. The Molecular Theory of Gases and Liquids. New York: John Willey and Sons, 1954. 1219 p.
  21. Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids. New York: McGraw-Hil, 1977. 688 p.
  22. Васильевский, С.А. Колесников А.Ф. Численное моделирование течений равновесной индукционной плазмы в цилиндрическом канале плазмотрона // Изв. РАН. Механика жидкости и газа. 2000. № 5. P. 164–173.
  23. Kroupnov A.A., Pogosbekian M.J. The influence of heterogeneous catalytic processes on the heat flux to the surface and the chemical composition of the shock layer at high-speed flow around blunt bodies // Acta Astronaut. 2024. V. 219. P. 517–531.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Calculation area during numerical simulation of the flow in the plasmatron VGU-4 when flowing around a model with a flat sensor. The distribution of the local Mach number M is shown.

Download (42KB)
3. Fig. 2. Dependence of the adsorption rate coefficient kad of nitrogen and oxygen atoms on Cu2O and SiO2 surfaces on the surface temperature.

Download (257KB)
4. Fig. 3. Dependence of the desorption rate coefficient kdes of nitrogen and oxygen atoms on Cu2O and SiO2 surface on the surface temperature.

Download (248KB)
5. Fig. 4. Dependence of the shock recombination rate coefficient ker of nitrogen and oxygen atoms on Cu2O and SiO2 surface on the surface temperature.

Download (296KB)
6. Fig. 5. Heat flux to the surface of SiO2 and Cu2O sensors as a function of the density of S0 adsorption sites: 1 - perfectly catalytic surface, 2 - non-catalytic surface, 3 - SiO2, 4 - Cu2O, 5 - SiO2 experiment, 6 - SiO2 S0*, 7 - Cu2O S0*.

Download (169KB)
7. Fig. 6. Heat flux contributions for SiO2 (a) and Cu2O (b) surfaces due to conduction and diffusion: 1 - total heat flux, 2 - heat conduction contribution, 3 - non-catalytic surface.

Download (284KB)
8. Fig. 7. Concentrations of gas-phase components on SiO2 (a) and Cu2O (b) surfaces as a function of the density of S0 adsorption sites.

Download (379KB)
9. Fig. 8. Rate of occurrence of molecular gas-phase components as a result of heterogeneous reactions on SiO2 (a) and Cu2O (b) surfaces depending on the density of S0 adsorption sites.

Download (307KB)
10. Fig. 9. Degrees of filling of SiO2 (a) and Cu2O (b) surfaces with adsorbed oxygen and nitrogen atoms as a function of the density of S0 adsorption sites.

Download (339KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».