SUBMERGING AND FLOATING-UP VORTICES IN THE PICTURE OF SMOOTH INFLOW OF A FREE-FALLING ETHANOL DROP INTO WATER
- Авторлар: Chashechkin Y.D1, Il’inykh A.Y.1
-
Мекемелер:
- Ishlinsky Institute for Problems in Mechanics
- Шығарылым: № 6 (2024)
- Беттер: 62-81
- Бөлім: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/283074
- DOI: https://doi.org/10.31857/S1024708424060074
- EDN: https://elibrary.ru/FDXBQH
- ID: 283074
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Yu. Chashechkin
Ishlinsky Institute for Problems in Mechanics
Email: chakin@ipmnet.ru
Moscow, Russia
A. Il’inykh
Ishlinsky Institute for Problems in Mechanics
Email: ilynykh@ipmnet.ru
Moscow, Russia
Әдебиет тізімі
- Rogers W.B. On the formation of rotating rings by air and liquids under certain conditions of discharge // Amer. J. Sci., Second Ser. 1858. V 26. P 246—258. https://biodiversitylibrary.org/page/36868460
- Thomson J.J., Newall H.F. On the formation of vortex rings by drops falling into liquids, and some allied phenomena // Proc. R. Soc. London. 1885. V 29. P 417-436. https://doi.org/10.1098/rspl.1885.0034
- Thompson D. W. On Growth and Form. Cambridge University Press. Cambridge. UK. 1917. 793 p.
- Edgerton H.E., Killian Jr. J.R. Flash. Hale, Cushman and Flint: Boston, USA, 1939. 203 p.
- Thoroddse, S.T.; Etoh T.G.; Takehara K. High-speed imaging of drops and bubbles // Ann. Rev. of Fluid Mech. 2008, 40(1), 257-285. doi: 10.1146/annurev.fluid.40.111406.102215.
- Versluis M. High-speed imaging in fluids // Exp. Fluids. 2013. V.54(2). P. 1-35.
- Okabe J., Inoue S. The Generation of Vortex Ring. Kyushu Univ., Rep. Res. Inst. Appl. Mech. 1960, 8(32), 91-101.
- Okabe J.; Inoue S. The generation of vortex rings, II. Rep. Res. Inst. Appl. Mech., Kyushu Universit. 1961, V. 9. P. 147-161
- Batchelor G. K. An Introduction to Fluid Dynamics, Cambridge University Press. Cambridge UK. 1967. 615 p.
- Chapman D., Critchlow P. Formation of vortex rings from falling drops // J. of Fluid Mech. 1967. V. 29(1). P. 177-185.
- Brutin D. Drop impingement on a deep liquid surface: study ofa crater’s sinking dynamics. C. R. Mecanique. 2003. V. 331. P. 61-66. doi: 10.1016/S1631-0721(02)00014-1
- Gao T.-C., Chen R.-H., Pu J.-Y., Lin T.-H. Collision between an ethanol drop and a water drop // Experiments in Fluids. 2005. V. 38. P. 731-738 doi: 10.1007/s00348-005-0952-1.
- Wal R.L.V., Berger G.M., Mozes S.D. The splash/non-splash boundary upon a dry surface and thin fluid film // Experiments in Fluids. 2006. V.40. P. 53-59. doi: 10.1007/s00348-005-0045-1
- Zen T.-S., Chou F.-C., Ma J.-L. Ethanol drop impact on an inclined moving surface // ICHMT. 2010. V. 37. P. 1025-1030. doi: 10.1016/j.icheatmasstransfer.2010.05.003.
- Bouchard D. J., Andredaki M., Georgoulas A., Marengo M., Chandra S. Penetration characteristics of a liquid droplet impacting on a narrow gap: Experimental and numerical analysis // Phys. Fluids. 2022. V. 34, 057111; https://doi.org/10.1063/5.0091045
- Thoraval M.-J., Takehara K., Etoh T. G., Thoroddsen S.T. Drop impact entrapment of bubble rings //J. Fluid Mech. 2013. V. 724. P. 234-258. doi: 10.1017/jfm.2013.147
- Liang G., Mudawar I. Review of mass and momentum interactions during drop impact on a liquid film // Int. J. Heat Mass Transf. 2016. V.101. P. 577-599. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.062
- Kirar P.K., Alvarenga K., Kolhe P., Sahu K.C. Coalescence of drops on the free-surface f a liquid pool at elevated temperatures // Phys. Fluids. 2020. V. 32, 052103. doi: 10.1063/5.0007402
- Rodriguez F., Mesler R. The penetration of drop-formed vortex rings into pools of liquid // J. of Colloid and Interface Sc. 1988. V. 121(1). P. 121-129
- Durst F. Penetration length and diameter development of vortex rings generated by impacting water drops // Experiments in Fl. 1996. V. 21. P. 110-117
- Dooley B., Warncke A., Gharib M. et al. Vortex ring generation due to the coalescence of a water drop at a free surface // Experiments in Fl. 1997. V. 22. P. 369-374
- Peck B., Sigurdson L., Faulkner B., Buttar I. An apparatus to study drop-formed vortex rings // Meas. Sci. Technol. 1995. V 6(10). P 1538-1545
- Peck B., Sigurdson L. The three-dimensional vortex structure of an impacting water drop // Phys. of Fluids. 1994. V. 6(2). P. 564-576
- Sigurdson L. Atom bomb/water drop (P. 78). In: Samimy M., Breuer K. S., Leal L.G., Steen P. H. A Gallery of Fluid Motion. Cambridge University Press. Cambridge, UK. 2003. 128 p.
- Lee J.S., Park S.J., Lee J.H., Weon B.M., Fezzaa K., Je J.H. Origin and dynamics of vortex rings in drop splashing // Nature Commun. 2015. V. 6(1). doi: 10.1038/ncomms9187
- Saha A., Wei Y., Tang X., Law C. K. Kinematics of vortex ring generated by a drop upon impacting a liquid pool // J. of Fluid Mech. 2019. V. 875, P. 842-853. doi: 10.1017/jfm.2019.503
- Meleshko V., Aref H. A bibliography of vortex dynamics 1858-1956 // Advances in Applied Mechanics. 2007. V. 41. P. 197-292. doi: 10.1016/s0065-2156(07)41003-1.
- Fukumoto Y., Moffatt H.K. Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity // J. Fluid Mech. 2000. V. 417. P. 1-45. DOI: https://doi.org/10.1017/S0022112000008995.
- Turner, J. S. Buoyant Vortex Rings. Proceedings of the Royal Society A. 1957. V. 239(1216). P. 61-75. doi: 10.1098/rspa.1957.0022
- Turner, J. S. Buoyancy effects in fluids. 1980. Cambridge University Press. Cambidge. UK. 412 p.
- Степанова Е.В., Чашечкин Ю.Д. Перенос маркера в составном вихре // МЖГ. 2010. №6. С. 12-29 Stepanova E. V., Chashechkin Yu. D., Marker transport in a composite vortex // Fluid Dyn. 2010. V. 45 (6). P. 843-858. doi: 10.1134/S0015462810060025
- Чашечкин Ю. Д. Перенос вещества окрашенной капли в слое жидкости с бегущими плоскими гравитационно-капиллярными волнами // Известия РАН. ФАО. 2022. Т. 58, № 2. С. 218-229. doi: 10.31857/S0002351522020031 Chashechkin Yu. D. Transfer of the substance of a colored drop in a liquid layer with travelling plane gravity-capillary waves // Izvestiya, AOP. 2022. V. 58 (2). P. 188-197. doi: 10.1134/S0001433822020037
- Chashechkin Yu. D., Ilinykh A. Y. Intrusive and impact modes of a falling drop coalescence with a target fluid at rest // Axioms. 2023. V. 12 (4). P. 374. doi: 10.3390/axioms12040374
- Zhang Y., Mu Z., Wei Y., Jamil H., Yang Y. Evolution of the heavy impacting droplet: Via a vortex ring to a bifurcation flower // Phys. of Fluids. 2021. V. 33. P. 113603. https://doi.org/10.1063/5.0064072
- Чашечкин Ю. Д., Ильиных А. Ю. Задержка формирования каверны в интрузивном режиме слияния свободно падающей капли с принимающей жидкостью // Доклады РАН. 2021. Т. 496 (1). С. 45-50. doi: 10.31857/s268674002101003x Chashechkin Yu. D., Ilinykh A. Y. The delay in cavity formation in the intrusive coalescence of a freely falling drop with a target fluid // Doklady Physics. 2021. V. 66 (1). P. 20-25. doi: 10.1134/S102833582101002X
- Thomson W., Tait P.G. A Treatise on Natural Philosophy. Clarendon Press, Oxford, UK. 1867. 727 p.
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука. 1986. 736 с. Landau L.D., Lifshitz E.M. Fluid Mechanics. V. 6. Course of Theoretical Physics, Pergamon Press: Oxford, UK, 1987; 560 p.
- Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean Sciences. 2018. V. 14. P. 471-502. https://doi.org/10.5194/os-14-471-2018
- Harvey A. H., Hruby J., Meier K. Improved and always improving: reference formulations for thermophysical properties of water // J. of Phys. and Chem. Ref. Data. 2023. V. 52. P. 011501. doi: 10.1063/5.0125524.
- Eisenberg D., Kauzmann W. The Structure and Properties of Water (Oxford Classic Texts in the Physical Sciences). Oxford University Press: Oxford, UK.2005. 308p.
- Teschke O., de Souza E.F. Water molecule clusters measured at water/air interfaces using atomic force microscopy // Phys. Chem. Chem. Phys. 2005. V. 7(22). P. 3856-3865. DOI: https://doi.org/10.1039/B511257E
- Bunkin N.F., Suyazov N.V., Shkirin A.V., Ignat’ev P.S., Indukaev K.V. Study of Nanostructure of highly purified water by measuring scattering matrix elements of laser radiation // Phys. Wave Phenom. 2008. V. 16. P. 243-260. doi: 10.3103/S1541308X08040018
- Malenkov G. G. Structure and dynamics of surfaces of thin films and water microdroplets // Colloid Jour. 2010. V. 72(5). P. 649-659. doi: 10.1134/S1061933X1005011X.
- Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10(4). P. 286. https://doi.org/10.3390/axioms10040286
- Naifeh A. Introduction to Perturbation Methods. New York. Wiley-VCH. 1981. Найфэ А. Введение в методы возмущений. М.: Мир. 1984. 532 с.
- Chashechkin Yu.D. Conventional partial and new complete solutions of the fundamental equations of fluid mechanics in the problem of periodic internal waves with accompanying ligaments generation // Mathematics. 2021. V. 9(6). P. 586. https://doi.org/10.3390/math9060586.
- Chashechkin Y.D., Ochirov A.A. Periodic flows in a viscous stratified fluid in a homogeneous gravitational field // Mathematics. 2023. V. 11. P. 4443. https://doi.org/10.3390/math11214443
- Li E.Q., Thoraval M.-J., Marston J.O., Thoroddsen S.T. Early azimuthal instability during drop impact // J. Fluid Mech.. 2018. V.848. P. 821-835. doi: 10.1017/jfm.2018.383
- Chashechkin Yu.D., Ilinykh A.Yu. Fine Flow Structure at the Miscible Fluids Contact Domain Boundary in the Impact Mode of Free-Falling Drop Coalescence // Fluids. 2023. 8(10). P. 269. https://doi.org/10.3390/fluids8100269.
- УИУ “ГФК ИПМех РАН”: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере. Сайт: http://www.ipmnet.ru/uniqequip/gfk/#equip.
- Rayleigh L. Some applications of photography //Nature. 1891. V 44. P. 249—254.
Қосымша файлдар
