Electric Field Effect on the Dynamics of the Structural Flow Components in the Case of Gravity-Induced Separation of a Water Drop
- Authors: Chashechkin Y.D.1, Prokhorov V.E.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Issue: No 3 (2024)
- Pages: 30-44
- Section: Articles
- URL: https://journals.rcsi.science/1024-7084/article/view/279973
- DOI: https://doi.org/10.31857/S1024708424030039
- EDN: https://elibrary.ru/PGEZAP
- ID: 279973
Cite item
Abstract
The high-speed videorecording method is used to investigate the effect of an electrostatic field (with the potential 0, 16, and 18 kV) on the flow geometry in the case of gravity-induced separation of a drop from a capillary tube. The flow videograms are analyzed and the dimensions of the characteristic structural elements, that is, the drops themselves, a connection, and satellites, are determined. The oscillations of the linear dimensions and the mother liquid volume after drop separation are traced at 0 and 18 kV. Both fundamental frequencies and their harmonics are observable in the spectra. It is found that small (12%) variations in the potential value lead to qualitative variations in the flow pattern and, in particular, to direct separation of the drop from the mother liquid without the formation of a connection. At a constant liquid flow in the capillary the dimensions of the separated drops decrease with increase of the voltage. The experiments show the possibility of the fine controlling of drop flows using electrostatic fields.
Keywords
About the authors
Y. D. Chashechkin
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Author for correspondence.
Email: chakin@ipmnet.ru
Russian Federation, Moscow, 119526
V. E. Prokhorov
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Email: prohorov@ipmnet.ru
Russian Federation, Moscow, 119526
References
- abbé Nollet J.A. Recherches sur les causes particulieres des phénomènes électriques, et sur les effets nuisibles ou avantageux qu’on peut en attendre. Paris: Chez les Freres Guerin, 1974. 444 p.
- Ломоносов М.В. Слово о явлениях воздушных, от электрической силы происходящих. Избранные произведения. Т. 1. Естественные науки и философия. М.: Наука. 1986. С. 163–191.
- Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces // Phys. Rev. 1914. V. 3(2), P. 69–91. doi: 10.1103/PhysRev.3.69
- Zeleny J. On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points // Proc. Camb. Phil. Soc. 1915. V. 18(1), P. 71–83.
- Zeleny J. Instability of electrified liquid surfaces // Phys. Rev. 1917. V. 10(1). P. 1–6. doi: 10.1103/PhysRev.10.1
- Tucker N., Stanger J.J., Staiger M.P., Razzaq H., Hofman K. The history of the science and technology of electrospinning from 1600 to 1995 // J. of Eng. Fibers and Fabrics, Special iss. 2012. V. 7(2). P. 63–71. doi: 10.1177/155892501200702S10
- Wesdemiotis С., Williams-Pavlantos K.N., Keating A.R., McGee A.S., Bochenek C. Mass spectrometry of polymers: A tutorial review // Mass. Spec. Rev. 2023. P. 1–50. https://doi.org/10.1002/mas.21844
- Edgerton H.E., Hauser E.A., Tucker W.B. Studies in drop formation as revealed by the high-speed motion camera // J. Phys. Chem. 1937. V. 41(7). P. 1017–1028. https://doi.org/10.1021/j150385a012
- Peregrine D.H., Shoker G., Symon A. The bifurcation of liquid bridges // J. of Fluid Mech. 1990. V. 212(1). P. 25–39. doi: 10.1017/S0022112090001835
- Zhang X., Basaran O.A. An experimental study of dynamics of drop formation // Phys. of Fluids. 1995. V.7(6). P. 1184–1203. doi: 10.1063/1.868577
- van der Waals J.D. The thermodynamic theory of capillarity flow under the hypothesis of a continuous variation of density (transl. by Rowlinson J.S.) // J. Statist. Phys. 1979. V. 20. P. 197–244.
- Brackbill J.U., Kothe D.B., Zemach C. A new method for modeling surface tension effects on fluid // J. Comp. Phys. 1992. V. 100. P. 335–354. doi: 10.1016/0021-9991(92)90240-Y
- Bierbrauer F., Kapur N., Wilson M.C.T. Drop pinch-off for discrete flows from a capillary // ESAIM: Proc. 2013. V. 40. P. 16–33. http://dx.doi.org/10.1051/proc/201340002
- Notz P.K., Chen A.U., Basaran O.A. Satellite drops: Unexpected dynamics and change of scaling during pinch-off // Phys. Fluids. 2001. V. 13(3), P. 549–552. doi: 10.1063/1.1343906
- Прохоров В.Е., Чашечкин Ю.Д. Динамика отрыва одиночных капель в воздушной среде // Изв. РАН. МЖГ. 2014. № 4. С. 109–118. = Prokhorov V.E., Chashechkin Yu.D. Dynamics of separation of a single drop in air // Fluid Dyn. 2014, V. 60(8), P. 355–359. doi: 10.1134/S1028335815080054
- Коршунов А.И. Колебания оторвавшейся от перемычки капли воды // Изв. РАН. МЖГ. 2015. № 4. C. 139–143. = Korshunov A.I. Oscillations of a water droplet separated from the connection // Fluid Dyn. 2015. V. 50. P. 585–589. https://doi.org/10.1134/S0015462815040134
- Kowalewski T.A. On the separation of droplets from a liquid jet // Fluid Dyn. Res. 1996. V. 17(3), P. 121–145. doi: 10.1016/0169-5983(95)00028-3
- Henderson D.M., Pritchard W.G., Smolka L.B. On the pinch-off of a pendant drop of viscous fluid // Phys. Fluids. 1997. V. 9(11). P. 3188–3200. https://doi.org/10.1063/1.869435
- Burton J.C., Rutledge J.E., Taborek P. Fluid pinch-off in superfluid and normal // Phys. Rev. E. 2007. V. 75(3). P. 036311. doi: 10.1103/physreve.75.036311
- Thiґevenaz V., Saureta A. The onset of heterogeneity in the pinch-off of suspension drops // PNAS. 2022. V. 119(13). P. 2120893119. https://doi.org/10.1073/pnas.2120893119
- Dinic J., Sharma V. Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method // Phys. Fluids. 2019. V. 31. P. 021211. doi: 10.1063/1.5061715
- Eggers J. Nonlinear dynamics and breakup of free-surface flows // Rev. of Modern Phys. 1997. V. 69(3). P. 865–929. doi: 10.1103/RevModPhys.69.865
- Eggers J., Villermaux E. Physics of liquid jets // Rep. Prog. Phys. 2008. V. 71. P. 036601. doi: 10.1088/0034–4885/71/3/036601
- Taylor G.I. Disintegration of water drops in an electric field // Proc. Roy. Soc. London A. 1964. V. 280(1382). P. 383–397. doi: 10.1098/rspa.1964.0151
- Cloupeau M., Prunet-Foch B. Electrostatic spraying of liquids: Main functioning modes // J. of Electrostatics. 1990. V. 25(2). P. 165–184. doi: 10.1016/0304-3886(90)90025-q
- Notz P.K., Basaran O.A. Dynamics of drop formation in an electric field // J. of Colloid and Interface Sci. 1999. V. 213(1). P. 218–237. doi: 10.1006/jcis.1999.6136
- Eow J.S., Ghadiri M., Sharif A. Experimental studies of deformation and break-up of aqueous drops in high electric fields // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2003. V. 225. P. 193–210.
- Vlahovska P.M. Electrohydrodynamics of drops and vesicles // Ann. Rev. of Fluid Mech. 2019. V. 51. P. 305–330. doi: 10.1146/annurev-fluid-122316050120
- Byers C.H., Perona J.J. Drop formation from an orifice in an electric field // AIChE J. 1988. V. 34(9). P. 1577–1580. doi: 10.1002/aic.690340922
- Hokmabad B.V., Sadri B., Charan M.R., Esmaeilzadeh E. An experimental investigation on hydrodynamics of charged water droplets in dielectric liquid medium in the presence of electric field // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2012. V. 401. P. 17–28. https://doi.org/10.1016/j.colsurfa.2012.02.043
- Hokmabad B.V., Faraji S., Dizajyekan T.G., Sadri B., Esmaeilzadeh E. Electric field-assisted manipulation of liquid jet and emanated droplets // Int. J. of Multiphase Flow. 2014. V. 65. P. 127–137.
- Zemskov A.A., Shiryaeva S.O., Grigor’ev A.I. The theory of monodispersion of liquids by gravitational and electric fields // J. Colloid Interface Sci. 1993. V. 158(1). P. 54–63. doi: 10.1006/jcis.1993.1228
- Grigor’ev A.I., Shiryaeva S.O. The theoretical consideration of physical regularities of electrostatic dispersion of liquids as aerosols // J. Aerosol Sci.. 1994. V. 25(6). P. 1079–1091. doi: 10.1016/0021-8502(94)90203-8
- Зубарев Н.М. Формирование конических острий на поверхности жидкого металла в электрическом поле // Письма в ЖЭТФ. 2001. № 73(10). С. 613–617. = Zubarev N.M. Formation of conic cusps at the surface of liquid metal in electric field // JETP Letters. 2001. V. 73(10). P. 544–548. doi: 10.1134/1.1387524
- Karabut E.A., Zhuravleva E.N., Zubarev N.M., Zubarev O.V. Evolution of nonlinear perturbations for a fluid flow with a free boundary. Exact results // J. Fluid Mech. 2022. V. 953. A1. doi: 10.1017/jfm.2022.918
- Takamatsu T., Yamaguchi M., Katayama T. Formation of single charged drops in a non-uniform electric field // JCEJ. 1983. V.16(4). P. 267–272. https://doi.org/10.1252/jcej.16.267
- Зубарев Н.М. Развитие неустойчивости заряженной поверхности жидкого гелия: точные решения // Письма в ЖЭТФ. 2000. № . 71(9). C. 534–538.
- Thoroddsen S.T., Etoh T.G., Takehara K. High-speed imaging of drops and bubbles // Ann. Rev. of Fluid Mech. 2008. V. 40(1). P. 257–285. doi: 10.1146/annurev.fluid.40.111406.102215
- Чашечкин Ю.Д., Прохоров В.Е. Андросенко В.Н. Моделирование влияния электрического поля на капельные течения // Физико-химическая кинетика в газовой динамике. 2023. № 24(4). С. 1–15. doi: 10.33257/PhChGD.24.4.1057
- Rai P., Gautam N., Chandra H. An experimental approach of generation of micro/nano scale liquid droplets by electrohydrodynamic atomization (EHDA) process // Mater. Today: Proc. 2017. V.4(2). P. 611–620. doi: 10.1016/j.matpr.2017.01.064
- Jones A.R., Thong K.C. The production of charged monodisperse fuel droplets by electrical dispersion // J. Phys. D: Appl. Phys. 1971. V.4. P. 1159–1168. doi: 10.1088/0022-3727/4/8/316
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
- Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10(4). P. 286. https://doi.org/10.3390/axioms10040286
- Эйзенберг Д., Кауцман В. Структура и свойства воды. Л-д: ГИМИЗ, 1975.
- Teschke O., de Souza E.F. Water molecule clusters measured at water/air interfaces using atomic force microscopy // Phys. Chem. Chem. Phys. 2005. V. 7(22). P. 3856–3865.
- Бункин Н.Ф., Индукаев К.В., Игнатьев П.С. Cпонтанная самоорганизация газовых микропузырей в жидкости // ЖЭТФ. 2007. № 131(3). C. 539–555.
- Чашечкин Ю.Д., Ильиных А.Ю. Тонкая структура картины распределения вещества свободно падающей капли на поверхности и в толще принимающей жидкости в импактном режиме слияния // Физико-химическая кинетика в газовой динамике. 2023. № 24(2). С. 1043. doi: 10.33257/PhChGD.24.2.1043
- УИУ «ГФК ИПМех РАН: Гидрофизический комплекс для моделирования гидродинамических процессов в окружающей среде и их воздействия на подводные технические объекты, а также распространения примесей в океане и атмосфере: site http://www.ipmnet.ru/uniqequip/gfk/#equip.
- Borthakur M.P, Biswas G., Bandyopadhyay D. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets // Phys. Rev. 2017. E96. P. 013115. doi: 10.1103/PhysRevE.96.013115
- Byers C.H., Perona J.J. Drop formation from an orifice in an electric field // AIChE J. 1988. V.34. P. 1577–1580. https://doi.org/10.1002/aic.690340922
- Cram L.E. A numerical model of droplet formation. Proceedings of the 1983 International conference on computational techniques and applications held in University of Sydney, Australia. Elsevier, 1984. P. 182–187.
Supplementary files
