Acoustic resonance in an annular cavity with axial transit flow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a coordinated computational and experimental study of acoustic self-oscillations in an annular cavity surrounding a circular pipe with a local narrowing are given. In the experiment, pressure fluctuations were measured on the outer wall of the annular cavity for various volume flow rates; air entered the pipe at the atmospheric pressure. It was found that the flow regime with excitation of acoustic self-oscillations in the cavity is implemented in a certain range of flow rates. The oscillation frequency corresponds to the first natural frequency, and the root-mean-square values of pressure fluctuations reach a level of 2300 Pa. Numerical simulation based on the RANS approach, carried out for the geometry and conditions of experiment, reproduces the observed effect of acoustic excitation of the cavity and gives similar values of the fluctuation amplitude. The oscillation modes developed at various volumetric flow rates are analyzed based on the obtained calculated data.

About the authors

E. V. Kolesnik

Peter the Great Saint-Petersburg Polytechnic University

Author for correspondence.
Email: kolesnik.ev1@spbstu.ru
Russian Federation, St.-Petersburg

D. K. Zaitsev

Peter the Great Saint-Petersburg Polytechnic University

Email: kolesnik.ev1@spbstu.ru
Russian Federation, St.-Petersburg

E. M. Smirnov

Peter the Great Saint-Petersburg Polytechnic University

Email: kolesnik.ev1@spbstu.ru
Russian Federation, St.-Petersburg

E. I. Shmelev

Afrikantov Experimental Design Bureau of Mechanical Engineering

Email: kolesnik.ev1@spbstu.ru
Russian Federation, St.-Petersburg

M. G. Maslov

Peter the Great Saint-Petersburg Polytechnic University

Email: kolesnik.ev1@spbstu.ru
Russian Federation, St.-Petersburg

A. V. Budnikov

Afrikantov Experimental Design Bureau of Mechanical Engineering

Email: kolesnik.ev1@spbstu.ru
Russian Federation, St.-Petersburg

References

  1. Rockwell D., Naudascher E. Review – self-sustained oscillations of flow past cavities // J. Fluids Eng. 1978. V. 100. № 2. P. 152–165. doi: 10.1115/1.3448624.
  2. Howe M.S. Edge, cavity and aperture tones at very low Mach numbers // J. Fluid Mech. 1997. V. 330. P. 61–84. doi: 10.1017/S0022112096003606.
  3. Rowley C.R., Williams D.R. Dynamics and control of high-Reynolds number flow over open cavities // Annu. Rev. Fluid Mech. 2006. V. 38. P. 251–276. doi: 10.1146/annurev.fluid.38.050304.092057.
  4. Ma R., Slaboch P.E., Morris S.C. Fluid mechanics of the flow-excited Helmholtz resonator // J. Fluid Mech. 2009. V. 623. P. 1–26. doi: 10.1017/S0022112008003911.
  5. Ziada S., Lafon P. Flow-excited acoustic resonance excitation mechanism, design guidelines, and counter measures // Applied Mechanics Reviews. 2014. V. 66. № 1. ID010802. 22 p. doi: 10.1115/1.4025788.
  6. Morris S.C. Shear-layer instabilities: particle image velocimetry measurements and implications for acoustics // Annu. Rev. Fluid Mech. 2011. V. 43. P. 529–550. doi: 10.1146/annurev-fluid-122109–160742.
  7. Rossiter J.E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds // Aeronautical Research Council Reports and Memoranda. 1964. № 3438. 32 p.
  8. Tam C.K.W., Block P.J.W. On the tones and pressure oscillations induced by flow over rectangular cavities // J. Fluid Mech. 1978. V. 89. № 2. P. 373–399. doi: 10.1017/S0022112078002657.
  9. Knisely C., Rockwell D. Self-sustained low-frequency components in an impinging shear layer // J. Fluid Mech. 1982. V. 116. P. 157–186. doi: 10.1017/S002211208200041X.
  10. Tracy M.B., Plentovich E.B. Cavity unsteady-pressure measurements at subsonic and transonic speeds // NASA Tech. Paper. 1997. № 3669. 78p.
  11. de Henshaw M.J.C. M219 cavity case: Verification and validation data for computational unsteady aerodynamics // Tech. Rep. RTO-TR-26, AC/323 (AVT) TP/19. Canada, St. Joseph Ottawa/Hull, 2000. P. 473–480.
  12. Heller H., Holmes D., Covert E. Flow-induced pressure oscillations in shallow cavities // J. Sound Vibr. 1971. V. 18. № 4. P. 545–553. doi: 10.1016/0022-460X(71)90105-2
  13. Chatellier L., Laumonier J., Gervais Y. Theoretical and experimental investigations of low Mach number turbulent cavity flows // Exp. Fluids. 2004. V. 36. P. 728–740. doi: 10.1007/s00348-003-0752-4.
  14. Elder S.A. Self-excited depth-mode resonance for a wall-mounted cavity in turbulent flow // J. Acoust. Soc. Am. 1978. V. 64. P. 877–890. doi: 10.1121/1.382047.
  15. Ziada S., Shine S. Strouhal numbers of flow-excited acoustic resonance of closed side branches // J. Fluids and Structures. 1999. V. 13. P. 127–142. doi: 10.1006/JFLS.1998.0189.
  16. Yang Y., Rockwell D., Cody K.L.F., Pollack M. Generation of tones due to flow past a deep cavity: Effect of streamwise length // J. Fluids and Structures. 2009. V. 25. P. 364–388. doi: 10.1016/j.jfluidstructs.2008.05.003.
  17. Morel T. Experimental study of a jet-driven Helmholtz oscillator // J. Fluids Eng. 1979. V. 101. P. 383–390. doi: 10.1115/1.3448983.
  18. de Jong A.T., Bijl H. Investigation of higher spanwise Helmholtz resonance modes in slender covered cavities // J. Acoust. Soc. Am. 2010. V. 128. № 4. P. 1668–1678. doi: 10.1121/1.3473698.
  19. Абдрашитов А.А., Марфин Е.А. Влияние длины сопла на работу струйного осциллятора Гельмгольца // Изв. РАН. МЖГ. 2021. № 1. С. 142–150. doi: 10.31857/S0568528121010011.
  20. Комкин А.И., Быков А.И. Инерционная присоединенная длина горла резонаторов Гельмгольца // Акуст. журн. 2016. Т. 62. № 3. С. 277–287. doi: 10.7868/S0320791916030096 = Komkin A.I., Bykov A.I. Inertial attached neck length of Helmholtz resonators // Acoust. Phys. 2016. V. 62. № 3. P. 269–279. doi: 10.1134/S106377101603009X.
  21. Bennett G.J., Stephens D.B. Resonant mode characterisation of a cylindrical Helmholtz cavity excited by a shear layer // J. Acoust. Soc. Am. 2017. V. 141. № 1. P. 7–18. doi: 10.1121/1.4973212.
  22. Lawson S.J., Barakos G.N. Review of numerical simulations for high-speed, turbulent cavity flows // Progress in Aerospace Sciences. 2011. V. 47. P. 186–216. doi: 10.1016/j.paerosci.2010.11.002.
  23. Heller H.H., Bliss D. The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression // AIAA Paper. 1975. № 75–491. 8 p. doi: 10.2514/6.1975-491.
  24. Даньков Б.Н., Дубень А.П., Козубская Т.К. Анализ автоколебательных процессов в каверне с открытым типом течения на основе данных вихреразрешающих расчетов // Изв. РАН. МЖГ. 2023. № 4. С. 156–166. doi: 10.31857/S1024708422600774.
  25. Даньков Б.Н., Дубень А.П., Козубская Т.К. Численное моделирование возникновения автоколебательного процесса возле трехмерного обратного уступа при трансзвуковом режиме обтекания // Изв. РАН. МЖГ. 2016. № 4. С. 108–119. doi: 10.7868/S0568528116040083.
  26. Дубень А.П., Жданова Н.С., Козубская Т.К. Численное исследование влияния дефлектора на аэродинамические и акустические характеристики турбулентного течения в каверне // Изв. РАН. МЖГ. 2017. № 4. С. 113–124. doi: 10.7868/S0568528117040107.
  27. Ванг Дж.М., Ванг Х., Ма Й., Минг К. Дж., У Дж.К. Характеристики течения в сверхзвуковой открытой полости // Изв. РАН. МЖГ. 2019. № 5. С. 135–149.doi: 10.1134/S0568528119050128.
  28. Jiang L., Zhang H., Duan Q., Zhang Y. Numerical study on acoustic resonance excitation in closed side branch pipeline conveying natural gas // Shock and Vibration. 2020. ID8857838. 19 p. doi: 10.1155/2020/8857838.
  29. Ho1 Y.W., Kim J.W. A wall-resolved large-eddy simulation of deep cavity flow in acoustic resonance // J. Fluid Mech. 2021. V. 917. ID A17. 30 p. doi: 10.1017/jfm.2021.261.
  30. Марфин Е.А., Абдрашитов А.А. Численные и экспериментальные исследования генерации звука в струйном осцилляторе Гельмгольца с щелевой камерой // Noise Theory and Practice. 2023. Т. 9. № 3 (34). С. 7–17.
  31. Menter F.R., Langtry R., Kuntz M. Ten years of industrial experience with the SST turbulence model // Turbulence, Heat and Mass Transfer 4. Begell House, 2003. P. 625–632.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».